Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Gadolinium Deposition within the Pediatric Brain: No Increased Intrinsic T1-Weighted Signal Intensity within the Dentate Nucleus following the Administration of a Minimum of 4 Doses of the Macrocyclic Agent Gadoteridol

Abstract

Background and purpose

Our aim was to evaluate whether serial administration of the macrocyclic gadolinium-based contrast agent gadoteridol in children is associated with T1-weighted hyperintensity within the dentate nucleus, an imaging surrogate for gadolinium deposition.

Materials and methods

We identified a retrospective cohort of 10 patients younger than 18 years of age who underwent between 4 and 8 gadoteridol-enhanced MR imaging examinations of the brain from 2016 to 2017. For comparison, we identified a retrospective cohort of 9 pediatric patients who each underwent 6 gadodiamide-enhanced MR imaging examinations. For each examination, both dentate nuclei were contoured on unenhanced images and the mean dentate-to-pons signal intensity ratio was calculated. Dentate-to-pons signal intensity ratios from the first and last scans were compared using paired t tests.

Results

In the gadoteridol group, there was no significant change in the mean dentate-to-pons signal intensity ratio from the first to the last scan (0.99 versus 0.99, P = .59). In the gadodiamide group, there was a significant increase in the mean dentate-to-pons signal intensity ratio from the first to the last scan (0.99 versus 1.10, P = .001).

Conclusions

Repeat administration of the macrocyclic gadolinium-based contrast agent gadoteridol in children was not associated with T1-weighted dentate hyperintensity, while the repeat administration of the linear gadolinium-based contrast agent gadodiamide was associated with T1-weighted dentate hyperintensity, presumably due to gadolinium deposition.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View