Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries

Abstract

Proteases are frequent pharmacological targets, and their inhibitors are valuable drugs in multiple pathologies. The catalytic mechanism and the active-site fold, however, are largely conserved among the protease classes, making the development of the selective inhibitors exceedingly challenging. In our departure from the conventional strategies, we reviewed the structure of known camelid inhibitory antibodies, which block enzyme activities via their unusually long, convex-shaped paratopes. We synthesized the human Fab antibody library (over 1.25 × 109 individual variants) that carried the extended, 23- to 27-residue, complementarity-determining region (CDR)-H3 segments. As a proof of principle, we used the catalytic domain of matrix metalloproteinase-14 (MMP-14), a promalignant protease and a drug target in cancer, as bait. In our screens, we identified 20 binders, of which 14 performed as potent and selective inhibitors of MMP-14 rather than as broad-specificity antagonists. Specifically, Fab 3A2 bound to MMP-14 in the vicinity of the active pocket with a high 4.8 nM affinity and was similarly efficient (9.7 nM) in inhibiting the protease cleavage activity. We suggest that the convex paratope antibody libraries described here could be readily generalized to facilitate the design of the antibody inhibitors to many additional enzymes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View