Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Effect of omega-3 fatty acid ethyl esters on the oxylipin composition of lipoproteins in hypertriglyceridemic, statin-treated subjects.

  • Author(s): Newman, John W;
  • Pedersen, Theresa L;
  • Brandenburg, Verdayne R;
  • Harris, William S;
  • Shearer, Gregory C
  • et al.
Abstract

Background

Oxylipins mediate inflammation, vascular tension, and more. Their presence in lipoproteins could explain why lipoproteins mediate nearly identical activities.

Methods

To determine how oxylipins are distributed in the lipoproteins of hypertriglyceridemic subjects, and whether omega-3 fatty acids alter them in a manner consistent with improved cardiovascular health, we recruited 15 dyslipidemic subjects whose levels of low density lipoprotein cholesterol (LDL-C) were at goal but who remained hypertriglyceridemic (200-499 mg/dL). They were treated them with the indicated dose of 4 g/d omega-3 acid ethyl esters (P-OM3) for 8 weeks. Measured oxylipins included mid-chain alcohols (HETEs, HEPEs and HDoHEs), ketones (KETEs), epoxides (as EpETrEs, EpETEs, and EpDPEs).

Results

At baseline, arachidonate-oxylipins (HETEs, KETEs, and EpETrEs) were most abundant in plasma with the greatest fraction of total abundance (mean |95% CI|) being carried in high density lipoproteins (HDL); 42% |31, 57| followed by very low density lipoproteins (VLDL); 27% |20, 36|; and LDL 21% |16, 28|. EPA- and DHA-derived oxylipins constituted less than 11% of total. HDL carried alcohols and epoxides but VLDL was also rich in ketones. Treatment decreased AA-derived oxylipins across lipoprotein classes (-23% |-33, -12|, p = 0.0003), and expanded EPA-(322% |241, 422|, p<0.0001) and DHA-derived oxylipins (123% |80, 176|, p<0.0001).

Conclusions

Each lipoprotein class carries a unique oxylipin complement. P-OM3 treatment alters the oxylipin content of all classes, reducing pro-inflammatory and increasing anti-inflammatory species, consistent with the improved inflammatory and vascular status associated with the treatment.

Trial registration

ClinicalTrials.gov NCT00959842.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View