Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Tracking Mechanical Stress and Cell Migration with Inexpensive Polymer Thin‐Film Sensors

Abstract

Polydiacetylene (PDA) Langmuir films are well known for their blue to red chromatic transitions in response to a variety of stimuli, including UV light, heat, bio-molecule bindings and mechanical stress. In this work, we detail the ability to tune PDA Langmuir films to exhibit discrete chromatic transitions in response to applied mechanical stress. Normal and shear-induced transitions were quantified using the Surface Forces Apparatus and established to be binary and tunable as a function of film formation conditions. Both monomer alkyl tail length and metal cations were used to manipulate the chromatic transition force threshold to enable discrete force sensing from ~50 to ~500 nN μm-2 for normal loading and ~2 to ~40 nN μm-2 for shear-induced transitions, which are appropriate for biological cells. The utility of PDA thin-film sensors was demonstrated with the slime mold Physarum polycephalum. The fluorescence readout of the films enabled: the area explored by Physarum to be visualized, the forces involved in locomotion to be quantified, and revealed novel puncta formation potentially associated with Physarum sampling its environment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View