- Main
Magneto-Stokes flow in a shallow free-surface annulus
Abstract
In this study, we analyse ‘magneto-Stokes’ flow, a fundamental magnetohydrodynamic (MHD) flow that shares the cylindrical-annular geometry of the Taylor–Couette cell but uses applied electromagnetic forces to circulate a free-surface layer of electrolyte at low Reynolds numbers. The first complete, analytical solution for time-dependent magneto-Stokes flow is presented and validated with coupled laboratory and numerical experiments. Three regimes are distinguished (shallow-layer, transitional and deep-layer flow regimes), and their influence on the efficiency of microscale mixing is clarified. The solution in the shallow-layer limit belongs to a newly identified class of MHD potential flows, and thus induces mixing without the aid of axial vorticity. We show that these shallow-layer magneto-Stokes flows can still augment mixing in distinct Taylor dispersion and advection-dominated mixing regimes. The existence of enhanced mixing across all three distinguished flow regimes is predicted by asymptotic scaling laws and supported by three-dimensional numerical simulations. Mixing enhancement is initiated with the least electromagnetic forcing in channels with order-unity depth-to-gap-width ratios. If the strength of the electromagnetic forcing is not a constraint, then shallow-layer flows can still yield the shortest mixing times in the advection-dominated limit. Our robust description of momentum evolution and mixing of passive tracers makes the annular magneto-Stokes system fit for use as an MHD reference flow.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-