Skip to main content
eScholarship
Open Access Publications from the University of California

Novel insights into the host immune response of chicken Harderian gland tissue during Newcastle disease virus infection and heat treatment.

  • Author(s): Saelao, Perot
  • Wang, Ying
  • Gallardo, Rodrigo A
  • Lamont, Susan J
  • Dekkers, Jack M
  • Kelly, Terra
  • Zhou, Huaijun
  • et al.
Abstract

BACKGROUND:Newcastle disease virus, in its most pathogenic form, threatens the livelihood of rural poultry farmers where there is a limited infrastructure and service for vaccinations to prevent outbreaks of the virus. Previously reported studies on the host response to Newcastle disease in chickens have not examined the disease under abiotic stressors, such as heat, which commonly experienced by chickens in regions such as Africa. The objective of this study was to elucidate the underlying biological mechanisms that contribute to disease resistance in chickens to the Newcastle disease virus while under the effects of heat stress. RESULTS:Differential gene expression analysis identified genes differentially expressed between treated and non-treated birds across three time points (2, 6, and 10 days post-infection) in Fayoumi and Leghorn birds. Across the three time points, Fayoumi had very few genes differentially expressed between treated and non-treated groups at 2 and 6 days post-infection. However, 202 genes were differentially expressed at 10 days post-infection. Alternatively, Leghorn had very few genes differentially expressed at 2 and 10 days post-infection but had 167 differentially expressed genes at 6 days post-infection. Very few differentially expressed genes were shared between the two genetic lines, and pathway analysis found unique signaling pathways specific to each genetic line. Fayoumi had significantly lower viral load, higher viral clearance, higher anti-NDV antibody levels, and fewer viral transcripts detected compared to Leghorns. Fayoumis activated immune related pathways including SAPK/JNK and p38 MAPK signaling pathways at earlier time points, while Leghorn would activate these same pathways at a later time. Further analysis revealed activation of the GP6 signaling pathway that may be responsible for the susceptible Leghorn response. CONCLUSIONS:The findings in this study confirmed our hypothesis that the Fayoumi line was more resistant to Newcastle disease virus infection compared to the Leghorn line. Within line and interaction analysis demonstrated substantial differences in response patterns between the two genetic lines that was not observed from the within line contrasts. This study has provided novel insights into the transcriptome response of the Harderian gland tissue during Newcastle disease virus infection while under heat stress utilizing a unique resistant and susceptible model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View