Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

RF Synthesis without Inductors

Abstract

Recent developments in RF receiver design have eliminated all on-chip inductors except for that used in the local oscillator. This dissertation addresses the “last inductor” problem and proposes both integer-N and fractional-N synthesizer architectures that achieve a phase noise and figure of merit (FOM) comparable to those of LC-VCO-based realizations.

A new wideband integer-N synthesizer is introduced to sufficiently suppress the ring’s phase noise. It employs an exclusive-OR (XOR) phase detector and a master-slave sampling filter (MSSF) to achieve a lock range of 2-3 GHz, a loop bandwidth equal to one half of the reference frequency, and a locked phase noise of -114 dBc/Hz up to 10-MHz offset with a 3-stage ring oscillator. Realized in 45-nm CMOS technology, the design uses a harmonic trap to suppress reference sidebands to less than -65 dBc while consuming 4 mW.

The wideband architecture has been successfully extended to a fractional-N loop as well. A ring-oscillator-based cascaded synthesizer incorporates a digital synchronous delay line and an analog noise trap to suppress the quantization noise of the Sigma-Delta modulator. Realized in 45-nm CMOS technology, the synthesizer exhibits an in-band phase noise of -109 dBc/Hz and an integrated rms jitter of 1.68 ps at 2.4 GHz with a power consumption of 6.4 mW.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View