Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Early-Life Exposure to Perfluoroalkyl Substances and Childhood Metabolic Function

Published Web Location

https://doi.org/10.1289/ehp303
Abstract

Background

Perfluoroalkyl substances (PFASs) are synthetic chemicals that may persist in the environment and in humans. There is a possible association between early-life PFAS exposure and metabolic dysfunction in later life, but data are limited.

Methods

We studied 665 mother-child pairs in Project Viva, a Boston, Massachusetts-area cohort recruited 1999-2002. We quantified concentrations of PFASs [perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorodecanoate (PFDeA)] in maternal plasma collected at the first prenatal visit (median, 9.6 weeks gestation) and in child plasma from the mid-childhood research visit (median, 7.7 years). We assessed leptin, adiponectin, and homeostatic model assessment of insulin resistance (HOMA-IR) in mid-childhood. We fit covariate-adjusted linear regression models and conducted stratified analyses by child sex.

Results

Children with higher PFAS concentrations had lower HOMA-IR [e.g., -10.1% (95% CI: -17.3, -2.3) per interquartile range increment in PFOA]. This inverse association between child PFAS and HOMA-IR was more pronounced in females [e.g., PFOA: -15.6% (95% CI: -25.4, -4.6) vs. -6.1% (95% CI: -16.2, 5.2) for males]. Child PFAS plasma concentrations were not associated with leptin or adiponectin. Prenatal PFAS plasma concentrations were not associated with leptin, adiponectin, or HOMA-IR in offspring.

Conclusions

We found no evidence for an adverse effect of early-life PFAS exposure on metabolic function in mid-childhood. In fact, children with higher PFAS concentrations had lower insulin resistance. Citation: Fleisch AF, Rifas-Shiman SL, Mora AM, Calafat AM, Ye X, Luttmann-Gibson H, Gillman MW, Oken E, Sagiv SK. 2017. Early-life exposure to perfluoroalkyl substances and childhood metabolic function. Environ Health Perspect 125:481-487; http://dx.doi.org/10.1289/EHP303.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View