Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Morphological Evolution and Dealloying During Corrosion of Ni20Cr (wt.%) in Molten FLiNaK Salts

Abstract

The dealloying corrosion behavior of the FCC Ni20Cr (wt%) in molten LiF-NaF-KF (FLiNaK) salts at 600 °C under varying applied potentials was investigated. Using in-operando electrochemical techniques and a multi-modal suite of characterization methods, we connect electrochemical potential, thermodynamic stability, and electro-dissolution kinetics to the corrosion morphologies. Notably, under certain potential regimes, a micron-scale bicontinuous structure, characterized by a network of interconnected pores and ligaments riched with the composition of the more noble (MN) element, becomes prominent. At other potentials both MN and less noble (LN) elements dealloy but at different rates. The dealloying process consists of lattice and grain boundary diffusion of Cr to the metal/salt interface, interphase Cr oxidation, accompanied by surface diffusion of Ni to form interconnected ligaments. At higher potentials, the bicontinuous porous structure undergoes further surface coarsening. Concurrently, Cr(II), Cr(III), and Ni(II) begin to dissolve, with the dissolution of Ni occurring at a significantly slower rate. When solid-state transport of Cr is exceeded by the interfacial rates, dealloying depths are limited.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View