Skip to main content
eScholarship
Open Access Publications from the University of California

Computational Complexity of Segmentation

Creative Commons 'BY' version 4.0 license
Abstract

Computational feasibility is a widespread concern that guides the framing and modeling of biological and artificial intelligence. The specification of cognitive system capacities is often shaped by unexamined intuitive assumptions about the search space and complexity of a subcomputation. However, a mistaken intuition might make such initial conceptualizations misleading for what empirical questions appear relevant later on. We undertake here computational-level modeling and complexity analyses of segmentation - a widely hypothesized subcomputation that plays a requisite role in explanations of capacities across domains - as a case study to show how crucial it is to formally assess these assumptions. We mathematically prove two sets of results regarding hardness and search space size that may run counter to intuition, and position their implications with respect to existing views on the subcapacity.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View