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Abstract

Mobile Vision Multicolor Target Detection and Color Information Decoding

by

Homayoun Bagherinia

Color-based computer vision approaches have proven pertinent in detecting

and classifying objects in various areas ranging from industrial inspection to mobile

vision and biomedical applications.

Smartphones are becoming an increasing research platform due to their high-

quality cameras and programmability as well as their portability. The computational

power of smartphones has been improving since the last decade which enables us to

make use of them as a target detection and decoding device.

In this thesis, we use computer vision approaches to propose effective detection

and decoding of multicolor surfaces. Our methods address the main issues related to

designing a practical detection and decoding problems, namely robustness and compu-

tational efficiency.

To this end, this thesis offers contributions in multicolor detection and de-

coding in mobile vision. In the first part of this thesis, we explore the potential use

of smartphones to detect a special multicolor marker that could potentially help blind

persons to find their way around in a suitably equipped environment. The use of mul-

ticolor surfaces not only increases the distinctiveness of the marker with respect to the

background and thus more reliable detection, but also enables detection by a model-

xii



based method that explicitly takes into account the variability of illumination. In the

second part of this thesis, we explore color information access by allowing users to de-

code a color barcode from a barcode image. Our image-based color barcode decoding

approaches are motivated by the necessity of increasing information density in a limited

space. In our approaches, we address practical issues such as changes of the observed

colors due to changing illuminant, specular reflection, and blur-induced color mixing

from neighboring barcode patches. In our initial decoding approaches, we consider

groups of color surfaces that can be decoded under variety of illuminants, exploiting the

fact that joint color changes can be represented by a low-dimensional subspace. Thus,

decoding a group of color surfaces is equivalent to searching for the nearest subspace

in a dataset. In another approach, rather than decoding individual patches or using a

clustering method, our algorithm iteratively decodes the colors of all patches across the

barcode image by minimizing the overall observation error. We achieve high information

rates using only three reference colors with a very low probability of decoding error.
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Chapter 1

Introduction

Color is crucial to many pattern detection and recognition systems. The image

recorded by a camera depends on the physical content of the scene and the characteristics

of the camera as well as the surface reflectance spectrum and the unknown illuminant

spectrum. Consequently, determining the colors of the surface of an object represented

by multiple colors is a challenging operation, especially if multiple light conditions are

expected. Therefore, illumination must be controlled or taken into account. The ability

of a vision system to model illumination change is central to the recovery of information

about the scene from image data, which inevitably has the scene illumination intertwined

with the information of interest. Other nuisance parameters include: specularities;

unknown or poorly calibrated camera color response; camera non-linearity; color mixing

from two nearby surfaces due to blur; quantization and noise.

One of the interesting applications using color is to embed information in the

color of printed surfaces. For example, a group of color surfaces can represent a symbol.
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This symbol can be detected as a multicolor marker (or fiducials) or decoded as a color

barcode for mobile vision applications. There is surprisingly little research work in the

literature on the topic of multicolor-based detection and decoding. Most research works

have been mainly focused on color clustering and color indexing, where color indexing

determines which surface among a set of possible color surfaces best represents the

unknown surface.

1.1 Multicolor-based detection

The first part of this thesis addresses the detection of a special multicolor

marker. One of the application of such multicolor marker is to help blind persons to

find their way around in a suitably equipped environment. Specifically, the system

should be based on simple markers, easily detectable by a cell phone that can be placed

in key locations in the environment. A blind person can search for such markers by

orienting the camera phone in different directions, effectively scanning the environment.

Once a marker is detected by the camera phone, the user is notified by an acoustic

signal. If desired, the user can move towards the marker (which could be placed near

a point of interest) by keeping track of the marker location via the camera phone. The

detection algorithm is a challenging problem due to color mixing caused by motion

and incorrect focus, perspective projection, power-constrained mobile platforms, and

nuisance parameters mentioned above. A number of markers and algorithms have been

proposed enabling fast and robust detection for applications such as augmented reality

2



and robotic localization. The majority of the markers described in the literature use

black-and-white patterns. In this case, detection relies on the shape properties of the

pattern in the marker. Relatively little attention has been given to design concepts

that rely on distinctive color rather than (or in addition to) shape analysis. The use

of multicolor surfaces increases the distinctiveness of the marker with respect to the

background and thus more reliable detection. Our multicolor-based design approach

is a joint design of the color selection of the marker and of the detection algorithm.

Without careful color choice and proper processing, color marker detection is likely to fail

in realistic conditions with multiple distractors and large variation in illumination. The

use of multi-color surfaces enables detection by a model-based method that explicitly

takes into account the variability of illumination.

1.2 Multicolor-based decoding

The second part of this thesis addresses the use of color to embed information

in color barcodes. The necessity of increasing information density in a limited space

led to the development of color barcodes. The use of color barcodes is gaining popu-

larity as a pervasive technology to encode more information per area unit than regular

black-and-white barcodes. There is surprisingly little research work in the literature on

the topic of color barcodes. Especially, none of the previous works tried to model the

changes of the observed color due to changing illuminant and blur-induced color mixing

from neighboring barcode patches. The goal of color barcodes is to encode information

3



with high spatial density while ensuring robust reading by a camera. The data capacity

can be increased in a color barcode either by increasing the color patch density by using

more patches in a barcode of a given size or by increasing the number of colors in a bar-

code. Both approaches have their limitations. Color patch density can only be increased

up to a point prior to where adjacent patches can no longer be clearly distinguished

without error due to the camera resolution. The main problem with using many colors

in a barcode is that the color distribution of one color can overlap significantly with

color distributions of other colors. Our contributions were motivated by improving the

performance of a color barcode decoding under variety of illuminants and other nui-

sance parameters such as specularities and blur-induced color mixing from neighboring

patches. Another goal of this work is development of new approaches to encode more

information per area unit than existing color barcodes which may potentially lead to

higher information rates per area unit.

1.2.1 Introduction to color barcodes

Barcodes have become tremendously popular as a means for information em-

bedding technologies. The goal of a barcode is to encode information with high spa-

tial density while ensuring robust reading by an optical system. Typical 1-D barcode

technology use dark ink on a light-colored surface (or vice-versa); the resulting spatial

pattern encodes the information [66]. 2-D barcodes encode data in both vertical and

horizontal directions which increases significantly the data capacity of barcodes [2]. Us-

ing only two colors (e.g. black and white) with maximal color distance ensures robust
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Figure 1.1: Number of Bits vs. Number of Colors.

decoding capability even with decoding devices that are of relatively low resolution.

However, the information density of such barcodes is limited in a given space. In or-

der to increase the density of information, different ink colors could be used to create

color barcodes. Color barcodes increase data capacity without increasing the number

of patches in a barcode. A color patch can represent more than one bit, depending on

the number of colors used for encoding the data. When four different colors are used to

encode information, one color patch can represent two bits. When eight different colors

are used, three bits can be encoded in a patch. Using 16 colors instead of 4 would allow

one to encode twice as many bits in the same area. The density of information (in bits

per area unit) is proportional to log2N , where N is the number of colors used. Thus,

it would be desirable to use a large number of colors to embed more information in the

same barcode area. Figure 1.1 illustrates the number of bits vs. number of colors.

5



There are several challenges using color. For instance, color is more susceptible

to variations introduced by the printing device, the printing technology, the medium,

such as paper, and its aging. The resulting color value may therefore differ from the

color value that was printed by a printing device. The color value may change over

time due to the changes in color tone, materials used to imprint symbols, smear or

absorbance of moisture. In addition, the observed surface color depends not only on the

surface reflectance spectrum, but also on the (unknown) illuminant spectrum, which

represents a nuisance parameter. Consequently, determining the color index of each

surface in the barcode is a challenging operation, especially if multiple light conditions

(indoor/outdoor) are expected. Other nuisance parameters include: specularities; color

drift during printing; unknown or poorly calibrated camera color response; camera non-

linearity; color mixing from two nearby patches due to blur; quantization and noise.

Most color barcode technologies overcome some of these difficulties by incorporation

of a reference color palette within the barcode itself. It allows a comparison between

the imaged patch colors and a set of reference colors so that robust color decoding is

ensured. However, using many colors in a barcode makes the color indexing of barcode

patches a challenging problem.

For example, Microsoft’s High Capacity Color Barcode (HCCB) decoding

method [53] clusters four or eight colors, and assigns each cluster to the closest color

in the palette displayed in the barcode (Fig. 1.2). This clustering approach may not

perform well if a large number of colors are used in the barcode system. One challenge

facing color clustering methods using a large number of colors is that the color distri-
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Figure 1.2: An example of HCCB code. The rightmost four patches in the last row (shown

here with a gray border for display purpose) represent the palette of reference colors.

bution of one class can overlap significantly with color distributions of other classes.

In addition, a palette of colors may ensure the robustness of the decoding, however,

information density is reduced because a color palette with a large number of colors

occupies the content space and cannot be used to encode information. In addition, this

strategy only works for dense barcodes, with the number of patches largely exceeding

the number of colors available, so that the addition of the color palette to the barcode

has minimum impact on the spatial density of information. In addition of using a refer-

ence color palette, most 2D barcodes have error detection and correction capability [53]

, which increase the robustness of decoding at the cost of reducing information density.

Another way to increase information density in a given space is a robust decod-

ing method that allwos for a smaller patch size compared to methods using larger patch

sizes to ensure the robustness of their decoding algorithm. For instance, in chapter 5 we

describe a method that enables higher information density in a given space by allwoing

smaller patch sizes using only three colors.
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In conclusion of this section, we point out that we are not considering any form

of channel coding to reduce the decoding error rate at the cost of increased redundancy.

Channel coding, which is used commonly for barcodes, could certainly be implemented

in the barcodes considered here as well. Our focus is only on algorithms for decoding the

color information in a barcode. Other important issues such as detecting the presence

of a barcode in an image or localizing each individual patch are outside the scope of

this thesis.

1.2.2 Previous work

Perhaps the first reported attempt to use color in a 2-D barcode can be found

in a patent by Han et al. [34], who used reference cells to provide standard colors

for correct indexing. This technology, named ColorCodeTM, is marketed by Colorzip

Media (colorzip.com). A different type of color barcodes [58] is marketed by ImageId

(imageid.com). Bulan et al. [14] proposed to embed data in two different printer colorant

channels via halftone-dot orientation modulation. Grillo et al. [33] used 4 or 16 colors

in a regular QR code. PM codes [69] use color to define layers, each of which makes up

a 2-D barcode. Kato et al. [38] select colors that are maximally separated in a plane of

the RGB color cube. The same type of color barcode (named MMCC) was used in a

study the effect of JPEG compression on decoding [68]. Pei et al. used four colors in a

color barcode technology named “Continuous Color Barcode Symbols” [55].

The HCCB decoding method [53] classifies N clusters in color space using

mean shift clustering, and assigns each cluster center to one of the reference colors in a
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color palette, printed with the barcode.

Blasinski and et al [12] use a model-based interference cancellation procedure

to recover the encoded data from each color channel. They propose a color interference

cancellation algorithm that estimates the cyan (C), magenta (M), and yellow (Y) print

colorant Channels from the Red (R), Green (G), and Blue (B) channels of the captured

barcode. The encoded data is then extracted from each estimated colorant channel.

Grillo and and et al [33] introduced the High Capacity Colored Two Dimen-

sional (HCC2D) QR-based code (Quick Response), a new 2D code which increases the

code data density. HCC2D increases the storage space by using 4, 8, or 16 reference

colors in the palette.

Querini and Italiano [56] investigated the decoding error rate on HCC2D color

barcodes by using different classifiers such as Minimum Distance, Decision Trees, K-

means, Naive Bayes, and Support Vector Machines (SVM) classifiers. They showed

that K-means algorithm is the most effective classifier in their experiments.

None of these previous works tried to model the changes of the observed color

due to changing illuminant, except for the patent of Sali and Lax [58], which uses a

k-means classifier to assign the (R,G,B) value of a color patch to one reference color.

Note that existing color constancy algorithms (e.g.[45, 30, 29, 27, 13]) are not of much

use here. Classic color constancy assumes that neither the surface reflectance nor the

illumination are known a priori, and aims to infer the surface colors under some specific

scene hypotheses (e.g., gray world model, low-dimension illuminant/reflectance spectra).

In our case, we have full control over the selection of the surface colors that
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can be part of a barcode. This facilitates detection, but also poses the problem of which

surface colors and color combinations are best suited to the task. Closest to our work

is a recent paper by Wang and Manduchi [73], who studied the problem of information

embedding via printed color. Their algorithm used one or more reference patches of

known color, seen under the same illuminant as the color to be decoded. Observation

of the reference patch(es) produces an estimate of a parametric color transformation

between a canonical illuminant and the current illuminant, which is then used to decode

the information-carrying color patches. The reference patches thus play a similar role to

the color palette attached to the HCCB barcode, without the need to display all colors

in the palette (usually one or two reference color patches suffice).

1.3 Organization of this thesis

In what follows in this thesis, we introduce a robust multicolor detection

method and study several important problems in color barcode decoding that helps

us provide fast and robust solutions.

• In Chapter 2, we introduce a detection algorithm that is specifically designed

for multicolor, pie-shaped markers. We justify the use of colors we selected, and

propose a detection algorithm that is computationally very light and has excellent

performance in terms of detection and false alarm rate [6]. We also compare our

system with a popular grayscale marker (ARToolKit), and show that our color

markers enable more robust detection in various realistic conditions for a similar
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processing time.

• In Chapter 3, we introduce a new color barcode decoding approach that considers

groups of k color surfaces that can be decoded under variety of illuminants, ex-

ploiting the fact that joint color changes can be represented by a low-dimensional

subspace. Thus, decoding a group of color surfaces is equivalent to searching for

the nearest subspace in a dataset. We show that by carefully selecting a subset of

all possible k color surfaces, it is possible to achieve good information rate at low

decoding error probability [7].

• In Chapter 4, we propose a significantly faster color barcode decoding method than

the method described in chapter 3. This approach requires few reference colors

attached to the color barcode and can handle the presence of specular reflection.

We show that by carefully selecting a set of reference colors, it is possible to

achieve a higher information rate than mainstream methods at a low probability

of decoding error with relatively low computational complexity [8, 9].

• In Chapter 5, we present a new algorithm for color barcode decoding that can

handle barcode images taken with a cell phone camera in which uniform blur across

the barcode image can be present. In this work, rather than decoding individual

patches or using a clustering method, our iterative algorithm decodes the colors

of all patches across the barcode image by minimizing the overall observation

error. We show that our method uses only three reference colors ensuring higher

information density than mainstream approaches [10].
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• In Chapter 6, we conclude the thesis and propose several possible directions for

future work.
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Part I

Multicolor Markers Detection
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Chapter 2

Robust Real-time Detection of

Multicolor Markers on a Cellphone

2.1 Introduction

Camera-equipped programmable cell phones have become the platform of choice

for a wide variety of mobile computer vision applications, including augmented reality

([67]), gaming ([74]), mobile OCR (www.knfbreader.com), and barcode reading ([31]).

Our work is motivated by a specific goal: helping a blind person to find their way

around in a suitably equipped environment. Specifically, our system is based on sim-

ple ‘markers’, easily detectable by a cell phone, that can be placed in key locations in

the environment. A blind person can search for such markers by orienting the camera

phone in different directions, effectively ‘scanning’ the environment. Once a marker is

detected by the camera phone, the user is prompted by an acoustic signal. If desired,
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the user can move towards the marker (which could be placed near a point of interest)

by keeping track of the marker location via the camera phone. The marker may also

contain a certain amount of information, for example in the form of an ID that can be

used as a query to a locational database. In this way, the user could be provided with

turn-by-turn instructions to reach a specific destination.

Our system uses multi-colored pie-shaped markers, specifically designed for fast

recognition via mobile vision (see Fig. 2.1). Normally, color-based recognition requires

some sort of color constancy operation to deal with varying and unknown illuminants

([35]). In our case, this is not necessary because the colors of the different surfaces in the

marker are approximately co-variant with respect to changes in illumination. Since no

pre-processing is necessary, our color-based detection algorithm is inherently fast. For

added speed, a cascaded scheme is implemented. Most pixels are ruled out by the first

stages of the cascade, which reduces the overall average computational cost. Further

processing stages filter out any remaining false detections and compute the approximate

distance to the marker (by measuring the amount of foreshortening).

The marker design was introduced for the first time in ([22]), along with a

very simple detector and a post-processing (segmentation) algorithm ([23]). User studies

with blind testers of this system have been reported in ([49]). In this contribution, we

present a new marker detection algorithm, which is more efficient and accurate than

previous approaches, while achieving high computational efficiency. For example, our

system only needs to perform 1.1 multiplication and additions and 1.65 comparisons per

pixel (on average) when searching for a color marker with 98% correct detection rate and
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0.001% false positive rate. Note that the false alarms rate is then reduced further via

geometry-based processing ([23]). On a Nokia N95 8GB cell phone processing images

at VGA resolution, we achieve an effective frame rate of 8 fps (frames per second) when

no marker is visible in the scene, which reduces to 5 fps (due to shape analysis) when a

marker is visible. We also describe a simple technique to choose surfaces for the marker

that have good Lambertian characteristics, and thus small specular reflection. Reducing

the effect of specular reflection is critical for our color-based detection algorithm, as

specular reflection may change the perceived color of a surface in a way that is difficult

to model.

This chapter is organized as follows. We first review the related work in

Sec. 2.2. Our approach to marker design is described in Sec. 2.3. We review the

color rendering models used in our work (including linearization) in Sec. 2.4. Our de-

tection algorithm is described in detail in Sec. 2.5, and experimental results are given

in Sec. 3.4. An experimental comparison between our color marker and the popular

ARToolKit marker is presented in Sec. 2.7. Sec 2.8 has the conclusions.

2.2 Related work

Image-based labeling has been used extensively for product tagging (1-D and

2-D barcodes) and for robotic positioning and navigation. The ubiquitous 1-D barcode

(e.g. UPC and EAN) and 2-D barcode (e.g. Semacode and Shotcode) are designed so

as to contain a high density of information. However, barcodes are not the ideal choice
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for environmental labeling when the goal is quick detection from various distances in

possibly complex and cluttered environments.

A number of markers (or fiducials) have been proposed enabling fast and robust

detection, for applications such as augmented reality and robotic localization. The

majority of the markers described in the literature use black-and-white patterns (e.g.,

[40], [39], [59], [52], [57], [26], [18], [1]). In this case, detection relies on the shape

properties of the pattern in the marker. Relatively little attention has been given to

design concepts that rely on distinctive color, rather than (or in addition to) shape

analysis (e.g. [17], [64], [43]). Unfortunately, these systems have been tested mostly in

laboratory conditions, where one has the possibility to choose colors that are uniquely

identifiable (possibly after color correction to account for different illuminants ([43]).

Without careful color choice and proper processing, color marker detection is likely to fail

in realistic conditions with multiple distractors and large variation in illumination. The

color markers presented in this chapter use multiple colors to increase distinctiveness,

and are detected by a model-based algorithm that takes explicitly into account the

variability of illumination.

The use of color has also been proposed for increasing the capacity of 2-D bar

codes. Examples include Microsofts High Capacity Color Barcode (HCCB) technology

([53]) and Colorzip Media’s ColorCodes technology (www.colorzip.com).
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2.3 Marker design

Our color markers are pie-shaped with four colored sectors. We briefly justify

our design choice in the following; for an in-depth treatment, the reader is referred to

([22]). Marker detection is obtained by sliding a ‘probe’ across the image, where a probe

is the set of four pixels at the vertices of a square (with fixed size of a few pixels). Fig. 2.1

shows a picture of our marker with a probe superimposed. When the probe is placed at

or near the center of the image of a marker, each pixel in the probe records a color value

from a different sector of the marker. A carefully designed classifier determines whether

a given probe is on a marker or not. The advantage of the pie-shaped design is that

the same probe size can be used regardless of the apparent (foreshortened) size of the

marker (see Fig. 2.1). In addition, the probe does not need to be perfectly aligned with

the marker for detection. Theoretically, a rotation of up to ±45◦ around the camera’s

optical axes would still enable detection, as the points in the probe would still fit within

the correct sectors. In practice, the system works well if the rotation is within ±40◦ (see

Fig. 2.1). Note that more color sectors would increase distinctiveness of the marker with

respect to the background, and thus more reliable detection. However, this would affect

the rotation invariance properties, as a smaller rotation angle would cause the probe to

fall outside of the correct sectors. In addition, if the marker’s real estate is divided into

too many sectors, the number of pixels within each sector’s image is reduced, which in

turn reduces the maximum distance for detection due to foreshortening. Our four-color

markers have a diameter of 15 cm and can be detected at a distance of about 4.5 m
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Figure 2.1: Our color marker, seen from different viewpoint and with different camera rota-

tions. The blue superimposed crosses represent a fixed-size ‘probe’.

using a Nokia N95 8GB cell phone (with a field of view of 45◦ by 35◦) using images with

VGA resolution (640 × 480). This marker’s size and detection distance are acceptable

for our application.

The four color values in the probe are fed into a classifier, which decides

whether or not they are consistent with the image of a marker. This operation needs

to be very fast, as it is performed at each pixel in the image. Further processing is then

performed at all locations that passed this initial detection step. The largest cluster of

nearby locations is extracted, and if its size is larger than a threshold, the whole marker

image area is segmented out using a fast greedy region growing algorithm seeded with

the cluster center. A number of shape consistency tests are then performed on the

segmented region to reduce the risk of false alarms. Analysis of the segmentation mask

enables robust identification of four non-collinear points of known position (see Fig. 2.2)

which can be used to estimate the homography between the marker pattern and the

camera image plane, and thus the camera pose. The spatial ordering of the colors in

the marker can be permuted ([23]) providing a very simple way to embed information

19



Figure 2.2: A color marker (left) and its segmentation (center) using a fast greedy region

growing algorithm ([23]). Based on this segmentation, five points of known position can be

identified (right). The points circled in red are detected as the three corners of the segmentation

mask. By extending lines from the outer corners through the center corner, and computing their

intersection with the mask’s edge, two more points are identified (circled in blue). The location

of the four outer points can be used to estimate the homography between the marker pattern

and the camera image plane.

within the pattern itself (at an added computational cost - see Sec. 2.5.5).

At the core of the marker recognition algorithm is the initial color-based de-

tection. It is critical that the detection rate be high, since a missed marker cannot

be recovered by subsequent stages. The rate of false alarms must also be kept to a

minimum. Even though the post-processing operations can rule out a good number of

false alarms, these operations (especially the segmentation) are more computationally

demanding , and can reduce the effective frame rate if too many false positives need to

be examined. Our classification algorithm is introduced in Sec. 2.5; in the following,

we describe our strategy for choosing the surfaces in the marker in such a way so as to

20



facilitate robust recognition.

2.3.1 Choice of surfaces

In previous work ([22]) the markers were created using a color printer. The

colors were chosen according to a criterion of maximum distinctiveness. Extensive ex-

perimentation with this marker revealed that the colored surfaces produced by a color

printer, far from being Lambertian (matte), typically have a strong specular reflection

component. This represents a serious problem for classification. In the presence of spec-

ular reflection, a viewpoint-dependent component with the same color as the illuminant

adds to the perceived color of the surface from diffuse reflection ([60]). Classification

thus becomes more challenging, as the specular color component needs to be removed.

In order to reduce the effect of specular reflection, we decided to create new

markers as collages of colored paper with good characteristics of Lambertianity. We

purchased 25 colored paper samples from various sources, all with good nominal opacity

characteristics. Fifteen images of each individual paper were taken under the same

illuminant from multiple viewpoints. The scatterplot of the normalized values R/(R +

G+ B) vs. G/(R +G+ B) of the color of all surfaces is shown in Fig. 2.3. Note that,

under an ideal Lambertian model, the normalized color for a given surface should be

constant with respect to the viewpoint (as long as the illuminant does not change).

In fact, the scatterplot shows that the normalized colors from most of the surfaces we

tested are widely scattered. The point scatter within each color cluster is due in large

part to the specular component, as a certain amount of illuminant color is recorded
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Figure 2.3: A scatterplot of the normalized color values of the considered surfaces (the surface’s

ID is printed in the center of each cluster). Images of the surfaces were taken under the same

illuminants from 15 different viewpoints.

along with the surface color. In particular, most point clusters are oriented towards the

cluster of the ‘white’ surface points, whose color is similar to the color of the illuminant.

This scatterplot allows us to quickly identify the surfaces with best Lamber-

tian characteristics as the ones which produce the more compact point clusters. The

compactness of a cluster can be measured, for example, by the sum or the product

of the singular values of the collection of the normalized color values that form the

cluster. Based on this analysis, we selected one orange surface (ID=7) which has an

exceptionally compact point cluster in normalized color space (see Fig. 2.3).

We also selected a white and a black surface, following ([22]). The white

surface is little sensitive to specular reflection (since the color of the diffuse and specular

components are similar for a white surface). A white and a black surface nearby in the

marker provide a strong albedo gradient that contributes to the marker’s distinctiveness.
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For the remaining patch, we selected a surface on the basis of a combination of criteria:

compactness of the point cluster in normalized color space; albedo, measured by the sum

of the R, G, and B values for a given illuminant (large albedo values result in higher

SNR); distance in RGB space to the other selected colors (large distance means higher

distinctiveness). We selected a green patch (ID=6) which provided a good trade-off

based on these criteria. The resulting marker is shown in Fig. 2.1.

2.4 Color modeling

Our detection algorithm is based on a model of the perceived color of the four

sectors in the marker under varying viewpoint and varying illuminant. We assume that

the marker is on a flat surface, and that the illumination can be considered constant on

the marker (i.e., that there are no shadow lines crossing it). In the following, we briefly

review existing ‘color rendering’ models that can predict the color of a Lambertian

surface when seen under different illuminants. We then describe our strategy for photo-

metric camera calibration and linearization using a gamma model with bias. Finally, we

show that the vectors formed by the colors in a probe live in a low-dimensional subspace.

This notion is used for the design of the detector, presented in the next section.

2.4.1 Rendering model

Let us denote by c
(i)
(s) = [c

(i)
(s),1, c

(i)
(s),2, c

(i)
(s),3]

T the recorded color of the surface of

index s in the marker seen under an illuminant indexed by i, where c
(i)
(s),k represents the
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k-th color channel (R, G or B). As is well known, the recorded color c
(i)
(s) changes with

the illuminant i. These changes must be modeled and taken into account for the design

of the color-based classifier. The model must consider the spectrum of the illuminant,

the reflectance spectrum of the surface, the spectral sensitivity of the color filters in the

camera, and the viewpoint and incidence angles. For Lambertian (opaque) surfaces,

and assuming that the spectra of all possible illuminants and of all possible surface

reflectances live in finite dimensional spaces (of dimension Mi and Ms respectively), the

dependence of the surface color on the illuminant is described by the following quadratic

form ([47],[71]):

c
(i)
(s),k = α(i)TQkβ(s) (2.1)

where Qk is an Mi ×Ms matrix with positive entries that only depend on the camera

and on any linear transformation of the color channels (e.g. white-point calibration);

α(i) only depends on the illuminant and on its incidence angle on the surface, as well

as on the camera’s exposure time and gain; and β(s) only depends on the surface. In

particular, α(i) and β(s) are independent of the color channel k.

It is well known ([28]) that if Ms = 3, the relationship between the color of a

surface s when seen under two different illuminants can be expressed as follows:

c
(i2)
(s) = A(i1,i2)c

(i1)
(s) (2.2)

where A(i1,i2)is a 3 × 3 matrix that is independent of the surface s. A further simplifi-

cation is obtained by assuming that A(i1,i2) is diagonal (the so-called ‘diagonal model’),
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in which case the color channels transform independently:

c
(i2)
(s),k = a

(i1,i2)
k c

(i1)
(s),k (2.3)

where ak is the k-th diagonal entry of matrix A. Likewise, under the diagonal model,

the color values of two different surfaces s1 and s2 seen under the same illuminant i are

related by a diagonal matrix that is independent of the illuminant:

c
(i)
(s1),k

= a(s1,s2),kc
(i)
(s2),k

(2.4)

Although the diagonal model (2.3,2.4) is extremely convenient in practice, it should only

be considered as an approximation. In fact, it holds true only if each matrix Qk has

only one non–null column. [28] showed that when Mi = 3 and Ms = 2 (or Mi = 2 and

Ms = 3), there exists an invertible linear color transformation such that the diagonal

model holds exactly on the transformed colors.

2.4.2 Linearization

Ideally, the color values produced by the camera would be linearly related to

the recorded color vector c
(i)
(s) defined in the previous section. In practice, this relation is

more complex due to several factors: color values are obtained via a color mosaic; noise

adds to the measurements (including quantization noise); non-linear (e.g., gamma) cor-

rection compresses the measured values; and white-point correction applies independent

rescaling of the color channels. The last two factors (non-linear correction and white-

point correction) are dominant and need to be modeled and possibly compensated for

before processing. Fortunately, most camera and camera cell phones on the market let
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the user set white-point calibration to a fixed value. As for the non-linear correction,

this can be by-passed in some high-end cameras but not in cheaper cameras nor in most

camera cell phones. Thus, in order to undo the undesired non-linear processing, it is

necessary to “reverse engineer” the system via suitable calibration.

We modeled the non-linear correction performed by the camera as a biased

gamma correction ([48], [25], [62]):

c̄k = bk + cγkk (2.5)

where c̄k is the k-th channel color value at a given pixel produced by the camera via non-

linear transformation of the recorded value ck. (Note that any constant multiplicative

coefficient can be considered to be already absorbed in ck.) We assume that both the

gamma coefficients {γk} and the bias terms {bk} depend on the color channel.

In order to estimate {γk} and {bk}, we used a Macbeth color checkerboard

with 24 color chips. The albedo value v(s),k of each color chip s in the checkerboard

for each color channel k is known. Thus, under the diagonal model (2.4), one may

expect the recorded color values c(s),k to be proportional to the albedos v(s),k for a given

picture of the checkerboard. In order to increase the variety of sample data, we took

pictures of the checkerboard under 8 different illuminant conditions. Note that with our

camera cell phone (Nokia N95 8GB), we are unable to control the camera’s exposure

time and the gain, as they are set by the camera’s exposure control. Thus, each picture

of the checkerboard may have a different (and unknown) value of these parameters,

which can be expressed as a constant multiplicative term h(i) (where we highlighted
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the dependence on the illuminant i, which determines the overall scene brightness and

thus the parameters chosen by the automatic exposure control). In addition, due to the

varying illuminant, each color channel may undergo a different linear transformation

(multiplication by a factor a
(i)
k ) according to the diagonal model (2.3). In summary, we

model the k-th color channel value of the s-th color patch under the i-th illuminant as:

c̄
(i)
(s),k = bk + (h(i)a

(i)
k v(s),k)

γk = bk + g
(i)
k vγk(s),k (2.6)

where all linear coefficients have been absorbed in g
(i)
k .

Thus, our calibration task can be expressed as follows: Given a set of mea-

surements {c̄(i)(s),k} and known albedos {v(s),k}, estimate {γk} and {bk} based on (2.6).

The measurements {c̄(i)(s),k} were obtained by averaging the color values over hand-drawn

rectangles in the images of the color checkerboard.

We obtained a least-squares solution using Matlab’s fminsearch() minimiza-

tion function. As part of this procedure, we also estimated the coefficients g
(i)
k , which

allowed us to plot the results of our calibration in Fig. 2.4. Note that these coefficients

are irrelevant for our detection algorithm. The parameters found by our calibration

procedure are: γ1 = 0.34; γ2 = 0.24; γ3 = 0.39; b1 = −52; b2 = −127; b1 = −35.

2.4.3 Dimensionality considerations

As mentioned in Sec. 2.3, the camera collects measurements of ‘probes’, where

a probe is formed by the pixels at the vertices of a square of fixed side length. When

a probe is centered at or near the center of the image of a marker, and the camera is
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Figure 2.4: An illustration of our calibration results based on (2.6). The predicted values

bk + g
(i)
k vγk(s),k (using the values for γk, bk, and g

(i)
k estimated by our procedure and the known

albedo values of the color patches v(s),k) are plotted against the values c̄
(i)
(s),k produced by the

camera. Each dot represents a color patch under a certain illuminant. The dot’s color (red,

green, or blue) indicates the color channel (R, G or B) for that value.

correctly aligned, the probe contains color values of all surfaces in the marker. Let the

12-dimensional vector p(i) represent the concatenation of the three vectors (sub-probes)

p
(i)
k = [c

(i)
(1),k, . . . , c

(i)
(4),k]

T , where k from 1 to 3 represents the color channel, and let S be

the linear space spanned by p(i) over varying illuminant i.

Fact 1. Under the finite dimensional assumption (2.1), the following inequality hold:

dim(S) ≤ min(Mi, 12).

Proof. From (2.1) it follows that p
(i)T
k = α(i)TBk, with Bk = [Qkβ(1)| . . . |Qkβ(4)]. Thus,

a generic vector p(i) can be written as Bα(i) where B = [B1|B2|B3]
T . Since the matrices

Qk have size Mi ×Ms, we conclude that dim(S) = rank B = min(Mi, 3 · 4).

Note that the dimension of the space of illuminants Mi can be safely considered
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to be less than 12. For example, [50] showed that 3 basis functions were enough to model

the color observation of 462 Munsell chips. It follows that the probes live in a subspace

of dimension equal to Mi. In the case of the diagonal color model, one easily proves the

following:

Fact 2. If the diagonal color model (2.3) holds, then the space S can be expressed as

the direct sum of S1, S2 and S3, where Sk is the one-dimensional subspace of S spanned

by vectors p
(i)
k associated to one color component only.

Fig. 2.5, top, shows the sorted singular values of a matrix whose columns are

the 12-D color probes extracted from 150 pictures of the color marker taken in a variety

of indoor and outdoor illumination conditions and under different viewing angles (as

described in detail in Sec. 2.6.1). Any probe that contained a color value larger than

245 was considered saturated and removed from the data set used to create this plot.

All values were linearized by inverting the gamma transformation (2.5). It is seen that

the first singular value is much larger than the others. This phenomenon is typical, as

the first eigenvector represents the variation in intensity, which dominates other sources

of variability. The remaining singular values decrease fairly smoothly, and thus do not

provide a strong indication for the dimensionality of S. Looking at the three subspaces

S1, S2, S3 (Fig. 2.5, bottom), spanned by the sub-probes with only one color channel, one

again notices a dominant eigenvector in all three cases. In the following, we will assume

for simplicity’s sake that the diagonal model holds and therefore that the subspaces S1,

S2, S3 are one-dimensional.
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Figure 2.5: Sorted singular values of the 12-D color probes (top) and of the 4-D sub-probes

with only one color channel (bottom). The color of the bars indicates the color channel of the

sub-probe.

2.5 Detection algorithm

The design of the marker detection algorithm requires careful consideration of

several factors. Our application calls for robust detection with a very low rate of misses

and false alarms under a wide variety of viewing conditions and of background. At

the same time, the algorithm needs to be very light, so as to enable analysis of several

frames per second at reasonably high resolution when implemented on a cell phone. In

the following, we describe our design choices vis-a-vis these application requirements.

Our detection algorithm is based on a one–class classifier model: it analyzes

a probe to determine whether or not it may belong to the image of a marker, without

explicitly modeling the ‘background’ (non-marker) class. The reason for choosing a

one-class classifier is that it would be very difficult to produce a general model of the
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background that can apply to any environment. The typical approach of collecting

representative images of the background may not generalize well to previously unseen

situations. Fortunately, as discussed earlier, the distribution of color values of the

probes is well structured, as the 12-dimensional probe color vectors actually live in a

much lower dimensional space. This allows us to use a relatively simple classifier, which

is implemented in a cascaded structure ([72]) for improved efficiency.

2.5.1 Classifier design

Since the color probes are expected to live in a subspace S of R12, a simple

classifier could be obtained by thresholding the Euclidean distance of a probe p to such

subspace. However, even this simple operation turns out to be too computationally

expensive for real-time implementation on our cell phone with the desired resolution

(640× 480 pixels). We can reduce the computational complexity as follows. Firstly, we

assume that the diagonal color model (2.3) holds. Based on Fact 2, we note that the

square of the distance d(p,S) of the probe p to the subspace S is equal to the sum of the

squared distances of p to S1, S2 and S3 respectively. Accordingly, the distance-based

classifier declares a detection when:

3∑
k=1

d(pk,Sk)2 < τ̄2 (2.7)

where τ̄ is a suitable threshold, and pk is the vector formed by the four values in the

probe for the k-th channel (for the sake of notational simplicity, we neglect to indicate

the dependence on the illuminant i in the following). Additionally, rather than setting
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a threshold on the sum of squared distances to the {Sk}, we set a threshold τ = τ̄ /3 on

the maximum of such distances. In other words, we declare a detection when:

max
k

d(pk,Sk) < τ (2.8)

The advantage of this detector is that it can be implemented as a cascade of three tests,

each involving computation of d(p,Sk) and comparison with a constant.

If qk is the unit vector originating the one-dimensional subspace Sk, then

d(pk,Sk)2 = pTk pk − (pTk qk)
2 (2.9)

This operation requires 9 multiplications and 7 additions per pixel, which is still too

demanding for our real-time implementation. In order to reduce the computational cost

further, we introduce the following procedure. We begin by observing that, given any

two surface types (s1, s2) in the color marker, the following inequalities hold:

d(pk,Sk) ≥ d(p(s1,s2),k,S(s1,s2),k) (2.10)

d(pk,Sk)2 ≤
3∑

s1=1

4∑
s2=s1+1

d(p(s1,s2),k,S(s1,s2),k)
2 (2.11)

where p(s1,s2),k contains the k-th color channel for surfaces s1 and s2, and S(s1,s2),k is the

(one-dimensional) projection of Sk onto the plane P(s1,s2) spanned by the vectors p(s1,s2),k

for varying i. These inequalities show that a necessary condition for d(pk,Sk) < τ to

hold is that, for all surface pairs (s1, s2),

d(p(s1,s2),k,S(s1,s2),k) < τ (2.12)

while a sufficient condition is that, for all surface pairs (s1, s2),

d(p(s1,s2),k,S(s1,s2),k) < τ/
√

6 (2.13)
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as there are six terms in the sum in (2.11). This suggests the use of a cascaded implemen-

tation with six elemental classifiers, each computing d(p(s1,s2),k,S(s1,s2),k) for a choice

of (s1, s2). In practice, each elemental classifier examines whether p(s1,s2),k lies within

a strip in the plane P(s1,s2),k (see Fig. 2.11), where the strip is parallel to q(s1,s2),k, the

projection of qk onto P(s1,s2),k. A fast cascaded implementation of each elemental classi-

fiers can be derived by observing that (2.13) is satisfied when both of these inequalities

are satisfied:

p(s2),k − a(s1,s2),kp(s1),k < τ̂ (2.14)

p(s2),k − a(s1,s2),kp(s1),k > −τ̂

where a(s1,s2),k = q(s2),k/q(s1),k and

τ̂ = (τ/
√

6)/ cos(arctan a(s1,s2),k). Thus, each individual classifier in P(s1,s2),k requires

one multiplication, one addition, and one or two comparisons. In fact, as we discuss

below, we don’t use a single threshold but two distinct thresholds, τ̂1 and τ̂2, that are

learned from training data. The computation cost remains the same whether the same

or different thresholds are used.

The vectors {qk} is computed via SVD from training data. As for the thresh-

olds τ̂1 and τ̂2, we could use a simple criterion: choose the smallest values that ensure

correct detection of all probes in the training data. In practice, this means expanding

the ‘strip’ on either side of q(s1,s2),k until all training probes p(s1,s2),k are contained in

the strip. This ensures that all training data is correctly classified ([15]), ([22]). In our

experiments, we noted that this choice is often too conservative, in which case we can
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multiply both thresholds by a constant margin ratio (MR) coefficient.

It is instructive to compare these elemental detectors with those originally

proposed by [22], which simply compared p(s2),k − p(s1),k with a threshold τ . This is

equivalent to declaring detection when a sub-probe lies in a ‘detection sector’, formed

by all points p(s1,s2),k that are above (or below) a 45◦ line with intercept at p(s2),k = τ .

Clearly, this detector is less selective than the newly proposed one. In terms of com-

putational cost, our new method requires one multiplication and up to one comparison

more per pixel per elemental detector with respect to the original detector ([22]).

2.5.2 Computational cost

Since there are six permutations of the four surfaces in the marker taken two

at a time, and three color channels, the total number of elemental (cascaded) classifiers

is eighteen. In order for a probe to be classified as a candidate marker, it must pass all

eighteen tests. Assuming statistical independence of the tests, it is well known that the

overall probability of (correct) detection is

PD =
18∏
i=1

PDi (2.15)

where PDi is the probability of detection for the i-th elemental classifier. Likewise, the

overall probability of false alarm is equal to

PF =
18∏
i=1

PFi (2.16)
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The expected number of operations (multiplications or additions) for a non-marker

probe is

Nops = 1 +
18∑
i=2

i−1∏
j=1

PFi (2.17)

As for the number of comparisons in the case of a non-marker probe, one can reason

as follows. Suppose that color values of a non-marker probe are uniformly distributed

in the space outside the ‘detection strip’ defined by (2.13), and that the classification

strip is oriented approximately at 45 degrees. The first test in (2.14) checks whether

the probe is above the detection strip (with probability of 0.5 of finding it there). If

this is not the case, the second test in (2.14) checks if it is below the strip. The average

number of comparisons is thus 1.5 · Nops. This number should be taken as an upper

bound: if the detection strip is at a different angle, the order of the tests in (2.14) can

be chosen so that the first test detects a non-probe marker with probability larger than

0.5, thus reducing the average number of tests.

It is clear that the order of the elemental classifiers critically affects the average

computational cost Nops ([16]). The maximum efficiency is obtained when the classifiers

are ordered according to their false alarm rate PFi , with the first classifiers removing

most of the false alarms.

2.5.3 Dealing with saturated point

When a color value is saturated, our linear model no longer applies. The

effect of saturation to the color distribution can be seen clearly in the scatterplots of

Fig. 2.11. In order to deal with saturated points, we considered three possible strategies.
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The first strategy is to identify those color values that are saturated, and change the

classification rule for those points. This requires an additional number of comparisons

for each pixel, thus increasing the computational cost. In our experiments, this resulted

in an effective frame rate that was too low for our application. The second approach is

to simply neglect the presence of saturation, and treat saturated pixels and unsaturated

pixels alike. The third approach we considered is to remove saturated samples from

the training data before computing the eigenvectors {qk}. This helps ensuring that the

slope of the stripe in the P(s1,s2),k plane is not biased by the saturated pixels. However,

we consider all training samples when computing the thresholds τ̂1 and τ̂2. This is

necessary as we require that all training samples are correctly detected. The resulting

classifier is then applied on all new samples, regardless of whether they are saturated

or not.

2.5.4 The advantage of gamma correction

The detector design introduced in Sec. 2.5.1 is based on the distance between

the probe vector p and the subspace S in R12 where probe vectors are assumed to live.

This is a simple and powerful approach, with one major pitfall. Since the subspace

S contains the origin, any very dark probe (with color values close to zero) will be

classified as a marker. Indeed, this was the single major cause of false positives in our

experiments.

A simple fix could be to isolate very dark probes (via suitable thresholding) to

avoid that they be mistakenly classified as markers. Note in passing that our marker
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contains surfaces with high albedo (except for the black one) so it is unlikely that all

surfaces would produce very low color values. Unfortunately, our experiments have

shown that choosing a correct threshold is very difficult, leading to the risk of missing

a marker due to poor exposure.

We have found another (somewhat unexpected) solution by considering the

gamma-corrected data produced by the camera, rather than the linearized data. In-

deed, as we elaborate below, the linear color rendering model applies with only a small

modification to the gamma-corrected data, and this modification is key to an improved

algorithm with much reduced false alarms.

According to the diagonal model, the values p(s1),k and p(s2),k of a probe are

linearly related (2.4):

p(s2),k = a(s1,s2),kp(s1),k (2.18)

The gamma-corrected versions of p(s1),k and p(s2),k (i.e., the values produced by the

camera) are, according to (2.5):

p̄(s1),k = bk + pγk(s1),k , p̄(s2),k = bk + pγk(s2),k (2.19)

Combining (2.18) and (2.19) one obtains:

p̄(s2),k = bk(1− aγ(s1,s2),k) + aγ(s1,s2),kp̄(s1),k (2.20)

Hence, the gamma-corrected values satisfy a linear equation with non-null intercept

(except for the case

a(s1,s2),k = 1, in which the intercept is null). An example with a(s1,s2),k = 4 using the
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values for γ1 and b1 found in Sec. 2.4.2, is shown in Fig. 2.6. This suggests a simple

modification to our algorithm, which allows it to work with gamma-corrected data. We

first note that, since the (non-linearized) probes p̄k span a line that does not necessarily

intersect the origin, our previous approach to characterize this line by the dominant

eigenvector of the probe data would fail. We can correct for this by simply removing

the mean of the probes {p̄k} before eigenvector analysis. Since the mean is supposed to

lie on the line spanned by the p̄k, the dominant eigenvector qk of the zero-mean data

now reliably characterizes the line. Projection of qk onto planes P(s1,s2) gives the slope

ā(s1,s2),k of the line where points p̄(s1,s2),k are supposed to live. Then, similarly to the

previous case, a strip is expanded on either side of this line until all training points are

contained in the strip. Note that this classification region is structurally identical to

the case considered in Sec. 2.5.1, except that now it need not contain the origin. It is

exactly this characteristic that allows this approach to substantially reduce the rate of

false positives, as shown by the experimental results described in the next section.

2.5.5 Encoding information via color permutation

It is possible to encode a few bits of information within the marker by simply

permuting the position of the color patches (with the permutation index representing

the marker ID). Since there are 4!=24 permutations of the four colors, the information

content is log2 24 = 4.6 bits. Note that this form of information embedding comes at

no “area cost” - the overall marker area remains the same. Of course, more information

could be embedded by adding other patterns (e.g. 2-D bar codes) near the color markers.
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Figure 2.6: The dashed line shows the relationship p(s2),k = a(s1,s2),kp(s1),k with a(s1,s2),k = 4.

The solid line shows the relationship between the gamma-corrected (non-linearized) values p̄(s1),k

and p̄(s2),k.

In this case, the marker would be used simply as a distinctive fiducial, allowing for quick

and reliable identification of the pattern location.

A disadvantage of this simple approach is that it increases the computational

cost of marker detection. Whereas in the single-ID case (in which color patches have a

fixed position) detection is obtained via a cascade of tests, each involving two patches

(s1, s2) and one color channel (k), now the first step involves testing all possible per-

mutation of surfaces taken two at a time for the same color channel k (in total, 12

tests). Each patch pair that passes the first test “fixes” the position of two patches in

the permutation. Computing the expected number of operations for non-marker probes

is difficult. Empirically, we have observed an increase in the number of operations by a
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factor of 16 when considering all possible color permutations (see Table 2.1). We should

emphasize that this increased computational cost is incurred only when the marker’s

ID is unknown. If one is searching for a specific ID (that is, if the color permutation is

known), then the computational cost is the same as described in Sec. 2.5.2.

2.6 Experiments

2.6.1 Data sets

We collected 150 images, taken with the Nokia N95 8GB phone, of the marker

under different conditions of illumination (both indoors and outdoors), from different

viewing angles, and from different distances. Each image was hand-labeled. More

precisely, a 15× 15 square was drawn on each color sector, and a list was created with

25 pixels picked from each square. Then, probes were built by scanning the lists for the

four squares in parallel, taking the color values for each point in each list. Thus, our

marker training set contains 150 · 25 = 3, 750 probes. Note that we don’t low-pass filter

the training data (nor the test data). Although low-pass filtering would help removing

noise, its computational cost would reduce the effective frame rate. In addition, the

blur generated by a low-pass filter could potentially corrupt the color values within the

marker when the marker image is small (because taken from a distance).

We also took 5 different images (indoors and outdoors) of various ‘background’,

that were used to estimate the false alarm rates. (Note that the classifier is designed

only based on the marker images.) These background images, shown in Fig. 2.7, were
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Figure 2.7: The background image data set.

scanned with a probe with width of 12 pixels. In total, we collected 163,020 samples of

background data.

Fig. 2.8 show the sorted false positive rates PF for the different elemental

detectors, trained on all marker data and tested on the background images. These

detectors were designed on the gamma-corrected data p̄(s1,s2 , k) after mean removal

(Sec. 2.5.4) and without removing saturated pixels for the computation of the {qk}.

The margin rate MR was set to 1.

Figs. 2.11 and 2.12 show the scatterplots of the original gamma-corrected

(p̄(s1,s2),k) and linearized (p(s1,s2),k) probes for different choices of the surfaces s1 and s2

and for different color channels k. The plots are ordered according to the false positive

rates PF of the elemental filters in Fig. 2.8. In each figure we show the ‘classification

strip’, that is, the region in the P(s1,s2),k plane where a probe is classified as a marker
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Figure 2.8: The sorted false positive rate PF for the different elemental detectors operating on

the gamma-corrected training data. The detectors were designed after mean removal (Sec. 2.5.4)

and without removing saturated pixels for the computation of the {qk}. The margin rate MR

was set to 1.

by an elemental classifier. The solid lines identify the classification strip for the case in

which all samples are used for training, while the dashed lines represent the case in which

saturated points are removed before computing the eigenvectors {qk} (see Sec. 2.5.3).

Note that in several cases, the classification strips for the original gamma-corrected

probes p̄(s1,s2),k does not contain the origin.

2.6.2 Performance evaluation

In order to test our system, we performed a number of cross-validation exper-

iments. At each experiment n, half of the marker images were chosen at random. The

detector was trained on such images, and then tested on the data from the remain-

ing marker images to establish the detection rate PD(n), as well on the ‘background’
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data to compute the false alarm rate PF (n). The results of 30 such experiments were

then averaged together. Note that even though the classifier is guaranteed to produce

PD(n) = 1 for the data it was trained on, it is still prone to false negatives for the re-

maining data. Fig. 2.9, top, illustrates the results in the form of ‘pseudo-ROC’ curves.

Each pseudo-ROC curve is obtained by plotting PF against PD for varying ‘cascade

length’, where the cascade length is the number of elemental detectors in the cascade.

More precisely, we ordered the 18 elemental detectors (designed with margin rate MR

set to 1) according to increasing value of their false alarm rate. Then, we removed

detectors from the tail of the cascade to create cascaded detectors with different length.

It should be clear from (2.15), (2.16) and (2.17) that reducing the number of elemental

detectors increases PD as well as PF while reducing the computational cost Nops (see

also Fig. 2.9, bottom). These curves can be useful to choose the correct cascade length

if the application at hand sets specific requirements in terms of PD, PF or Nops.

The different pseudo-ROC curves in Fig. 2.9 correspond to different choices of

design parameters:

• Whether training (and testing) was performed on the original, gamma-corrected

data or on the linearized data (sec. 2.5.4);

• Whether saturated data was removed before computing the slope of the strips in

the elemental detectors or all trained data was used (see Sec. 2.5.3);

• Whether or not the eigenvectors {qk} originating Sk were computed by first re-

moving the mean of the training probes (see Sec. 2.5.4).
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Figure 2.9: Top: Pseudo-ROC curves for different design parameters. Bottom: Expected

number Nops of multiplication for input pixel when a marker is not visible as a function of the

cascade length. The values for Nops were computed using the actual values of PD and PF for

different cascade lengths rather than their approximation (2.15)–(2.17). Each marker in the

curve represents a different cascade length. Solid line: Original gamma-corrected data. Dashed

line: Linearized data. Red line: Data mean not removed before computing the eigenvectors

{qk}. Black line: Data mean removed. Circles: Saturated points not removed before computing

the eigenvectors {qk}. Crosses: Saturated points removed. The margin rate MR was set to 1

for these experiments.
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Figure 2.10: Left: ROC curve for a detector operating on the original gamma-corrected data

(data mean removed and saturated points not removed before computing the eigenvectors {qk}).

Right: Expected number Nops of multiplication for input pixel when a marker is not visible.

The different points in the curves correspond to different margin ratios MR.

From Fig. 2.9 it results clear that using the original gamma-corrected data

and removing the mean of the training probes before computing the eigenvectors {qk}

produces the best results. Other choices of parameters have large false alarm rates.

A single elemental detector with the lowest false positive rate (the first one shown in

Fig. 2.11, comparing data from the probe corresponding to the orange and the black

surface in the red channel) has PD = 0.97 and PF = 0.02. Increasing the cascade length

reduces both PD and PF , as expected.

Even with the best choice of parameters, it is seen that these results are not

satisfactory. For example, a false positive rate PF of 10−5 is achieved only at the cost

of a relatively low detection rate (PD = 0.93). As noted earlier, it is important to keep

the false alarm rate low even if subsequent post-processing may remove remaining false

alarms. For example, if PF = 10−5, a VGA-sized image without a marker will generate
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about 3 false alarms on average, which then need to be processed further. The detection

performance can be improved by increasing the margin ratio MR. Fig. 2.10, top, shows

the ROC curve for a detector operating on the original gamma-corrected data, with data

mean removed, and saturated points not removed before computing the eigenvectors

{qk} (corresponding to the best-performing pseudo-ROC curve in Fig. 2.9). This curve

is obtained by increasing the margin ratio from 1 to 1.5. Note that now the detection rate

PD increased to 0.98 for PF = 10−5 with MR=1.2. The corresponding computational

cost per pixel is of Nops = 1.1 multiplications and additions, and 1.5 · Nops = 1.65

comparisons.

We implemented the cascaded detection algorithm on the Nokia N95 8GB,

programmed in C under the Symbian OS 9.6 S60. This cell phone is equipped with

an ARM 11 332 MHz processor with 128 MB of RAM and 8GB of Flash memory.

The images are processed at full VGA resolution. The effective frame rate is about 8

frames per second (fps) when no marker is present. Due to post-processing (including

segmentation), the frame rate reduces to 5 fps when a marker is present. We tested the

system extensively as a wayfinding tool for persons who are blind ([49] - see Fig. 2.13).

2.7 Comparison with ARToolKit

We benchmarked the performance of our color marker system against a popular

marker, the ARToolKit ([40, 39, 1]) that does not use color information. The ARToolKit

marker has been used extensively for Augmented Reality (AR) applications. It consists
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Figure 2.11: The first ten scatterplots of color probe points from our training data, restricted

to the planes P(s1,s2),k. The gamma-corrected data (p̄(s1),k, p̄(s2),k) are shown on top of the

linearized data (p(s1),k, p(s2),k). The scatterplots are ordered according to the increasing false

positive rate PF of the elemental detectors as shown in Fig. 2.8. The ‘classification strips’ are

shown with different line types depending on whether saturated points were removed before

computing the eigenvectors {qk} (dashed line) or not (solid line). s = 1: White surface. s = 2:

Black surface. s = 3: Orange surface. s = 4: Green surface. k = 1: Red channel. k = 2: Green

channel. k = 3: Blue channel.

of a square black border encircling a grayscale pattern that contains the ID of the

marker. An improved version, the ARTag [26], still uses the square black border but

replaces its interior with a digital pattern of 36 bits.

For our comparative study, we used the open source implementation of the

ARToolkit Library for Windows maintained by the University of Washington1. The

detection algorithm works by first binarizing a greyscale image using a fixed threshold.

1www.hitl.washington.edu/artoolkit
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Figure 2.12: The last eight scatterplots of color probe points from our training data, restricted

to the planes P(s1,s2),k (see caption of Fig. 2.11).

The connected components of the binarized image are then computed, and their edges

and corners are extracted. The vertices of the detected outer black square are used

to compute the homography mapping the square onto its image in the camera. (Note

that, as shown in Fig. 2.2, a similar operation can be performed with our color marker,

by relying on the segmentation described in Sec. 2.3.) The interior of the black square

border is then analyzed to extract the marker’s ID.

In our experiments, we considered various realistic situations including differ-

ent viewing distances and angles, illumination conditions, motion blur, and occlusions.

Note that we are interested in the detection performance, and not in the ID computa-

tion. Hence, our results are only in terms of detection rate: we never checked whether

the ID computed by the ARToolKit algorithm was correct or not. In each test, a color

marker and an ARToolKit marker were placed side by side on a vertical surface, and
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Figure 2.13: Example of use of our color marker as a wayfinding system for blind persons ([49]).

images were taken by a Nokia N95 cell phone (at 640× 480 resolution) for further pro-

cessing on a laptop computer. This solution allowed us to compare the two algorithms

on the same computing platform. The diameter of the color marker (15 cm) was set to

be equal to the side length of the ARToolKit marker. There was never more than one

color marker and one ARToolKit marker visible in the same image.

The detection rates for the various experiments described in the following are

shown in Table 2.1, along with the average computational time (on the laptop) per

frame for both types of markers.

2.7.1 Experiments

2.7.1.1 Multiple camera placements

In this experiment, images of the marker pair were taken from angles of 0, 30

and 60 degrees (with respect to the normal to the markers’ surface), at 6 equispaced
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distances from 0.6 to 3.6 meters. Two different illumination conditions were consid-

ered. The camera locations and sample images are shown in Fig. 2.14. Under the first

illuminant, the color marker was detected from any location, while the ARToolKit was

not detected at distances beyond 2.4 meters. Under the second illuminant, the color

marker was detected in all but one location. The ARToolKit marker was not detected

in 4 locations.

2.7.1.2 Motion blur - Bright light

24 images were taken of the marker pairs under a bright illuminant from various

distances, while the camera was moving. Camera motion should always be expected with

mobile vision applications; these experiments are meant to study the robustness of the

detection algorithms under the ensuing motion blur. The color marker was detected all

24 times, while the ARToolKit marker was detected 20 times. Examples are shown in

Fig. 2.15.

2.7.1.3 Motion blur - Dim light

In this case, 58 images of the markers under dim light were taken while the

camera was moving. In low light conditions the camera is forced to increase exposure

time and sensor gain. This gives rise to motion blur and noise, both clearly noticeable

in the examples of Fig. 2.16. Under this challenging condition, the color marker was

detected 47 times, while the ARToolKit marker was never detected, due to the fact that

the fixed threshold was too high for correct binarization.
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2.7.1.4 Occlusions

7 images were taken with both markers being partly occluded by a surface.

This situation may occur, for example, when one is searching for a marker in a crowded

scene, with other persons impeding view of part of the marker. The color marker was

detected in all but one case (in which it was actually detected, but segmentation was

not successful - see Fig. 2.17). The ARToolKit marker was detected only once in these

experiments.

2.7.1.5 False positives

No instances of false positives were recorded using the color marker, even

when the background contained a variety of colors. Sporadic episodes of false positives

occurred with the ARToolKit marker (see e.g. Fig. 2.18).

2.7.1.6 Processing time

The average processing times for the two algorithms, computed on the laptop

computer used for the experiments (Intel Pentium Dual CPU T3200 at 2 GHz with

3 GB RAM) for images with size of 640 × 480 pixels, are shown in Table 2.1. Two

different versions of the color marker detection algorithm were implemented: one in

which a specific ID marker was searched for, and one that considered all possible 24

color permutations as described in Sec. 2.5.5.

For the single-ID color marker, the processing time is lower than for the AR-

ToolKit detection when there are no markers visible in the scene. When a marker is
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visible and detected, the color marker takes a slightly larger computational time. Note

that these computational times include segmentation (described in Sec. 2.3). When a

marker is detected, segmentation accounts for about 16% of the computational cost.

The situation is very different when the marker ID is not known in advance.

In this case, as explained in Sec. 2.5.5, a much larger number of tests is required for

each pixel, leading to an increase in processing time by a factor of 16.

2.7.2 Discussion

The basic conclusion from these experiments is that, for the same marker

surface area, color markers can be detected far more robustly and at a wider range

of distances than ARToolKit markers. The detection speed is comparable in the two

cases when a specific ID marker is searched for. However, if all 24 marker IDs are

considered during search using the color permutation technique of Sec. 2.5.5, color

markers require a much larger (16 times) computational time than ARToolKit markers.

A careful comparative analysis of the two marker types and detection algorithm can

shed light on these performance differences.

Detection of an ARToolKit marker hinges on successful binarization of the

marker’s outer edge. Since the marker’s outer edge is black on a white background,

binarization is in most cases attainable using a fixed threshold. The ability to use a

fixed threshold is vital for computational efficiency, a factor that is especially impor-

tant with power-constrained mobile platforms and when high image resolution is used.

Unfortunately, as seen in the experiments with dim ambient light (Sec. 2.7.1.3), a fixed
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threshold may lead to gross errors in some situations. Adaptive binarization ([70]) would

most likely improve results, but at a heavier computational cost. This is, in fact, one

of the principal advantage of using color markers: robust detection of carefully chosen

color patterns is achievable with very few operations per pixel under any illuminant.

The outer black border of the ARToolKit marker needs to be resolved at a

high enough resolution to enable geometric analysis. This places a heavy constraint on

the maximum distance at which the marker can be detected. An advantage of the color

marker is that it does not require geometric processing for detection: as long as the

probe is contained in the marker’s image (see Fig. 2.1), detection can be achieved.

The reason for the dramatic increase of computational time when the color

marker’s ID is not known in advance is that ID identification for permuted-color markers

is embedded in the search process at the pixel level. In the case of ARToolKit markers,

the ID information is inside the marker, while detection only uses the outside border.

A similar solution would be impossible with our color marker: the whole surface of the

color marker must be used for the color patches, since the probe’s vertices may fall on

different points of the marker’s image depending on the viewing distance. It should be

noted, however, that the maximum distance at which the pattern inside an ARToolKit

marker can be decoded is likely to be smaller than the maximum distance at which the

outer border of the marker can be detected, and that the decoding process is likely to

be affected by motion blur (see e.g Fig. 2.15).

Different solutions for embedding ID information in a color marker could be

considered, such as using a color or grayscale pattern in an outer ring around the marker.
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DETECTION RATE
Color ARToolKit

Marker Marker

Various placements
Illuminant 1

18/18 12/18

Various placements
Illuminant 2

17/18 14/18

Motion blur
Bright light

24/24 20/24

Motion blur
Dim light

47/58 0/58

Partially occluded 6/7 1/7

PROCESSING TIME (ms)
Color ARToolKit

Marker Marker

Individual ID
No visible markers

2.6 3.2

Individual ID
Visible markers

3.9 3.7

Multiple IDs
No visible markers

58.9 3.2

Multiple IDs
Visible markers

58.9 3.7

Table 2.1: Comparative results in terms of detection rate and processing time for the tests

considered in Sec. 2.7.

In particular, it was shown recently that up to 7 bits of information can be embedded

reliably within a single color patch ([73]). Thus, a selected set of just a few color patches

around the marker could convey enough ID information for most practical purposes.
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Figure 2.14: Comparative detection experiments using the color marker and the ARToolKit

marker for two different illuminants (Sec. 2.7.1.1). The diameter of the color marker (set to

15 cm) was equal to the side length of the ARToolKit marker. The markers were placed side

by side on a wall, at a location shown by a small rectangle in the bird-eye view. Images were

taken with a cell phone camera placed in the locations shown by the circles. Locations in which

the color marker was successfully detected are marked in red. A thick black border indicates

successful detection of the ARToolKit marker. The image crop-outs show samples of correct

and missed detection. Successful detection is indicated by the yellow area on a color marker

(which shows the result of segmentation, as described in Sec. 2.3) or by the yellow edges on a

ARToolKit marker.
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Figure 2.15: Correct and missed detection examples for the Motion blur - Bright light experi-

ments (Sec. 2.7.1.2).

Figure 2.16: Correct and missed detection examples for the Motion blur - Dim light experi-

ments (Sec. 2.7.1.3).

Figure 2.17: Correct and missed detection examples for the Occlusions experiments

(Sec. 2.7.1.4).
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Figure 2.18: An example of false positive and missed detection for the ARToolKit marker.

2.8 Conclusions

We introduced a new detection algorithm that is suitable for multi-color, pie-

shaped markers. This is a crucial component in a cell phone-based system that uses

environmental labeling for blind wayfinding. The proposed algorithm is very light and

has excellent performance in terms of detection rate and false alarm rate. The algorithm

is implemented as a cascade of elemental detectors, each one of which operates on only

two color values from a probe in the same color channel. The elemental detectors are

derived based on a diagonal rendering model. One interesting result of our study (for

which we provide formal justification) is that using the original, gamma-corrected data

gives better results than using linearized data. In addition, we have introduced a very

simple method for selecting surfaces for our color markers that have good Lambertian

characteristics, and thus minimize the risk of mis-detection due to specular reflection.

Compared with a popular grayscale marker (ARToolKit), our color markers

enable more robust detection in various realistic conditions for a similar processing time.

However, the modality used by the ARToolKit (and other similar marker such as the
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ARTag) for embedding ID information allows for faster decoding than the simple ap-

proach of color permutation proposed for the color markers. We are currently exploring

new strategies for encoding ID information using a grayscale or color pattern at the

outer edge of the color marker.
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Part II

Color Information Decoding
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Chapter 3

Subspace-based Color Barcode Elements

Decoding

3.1 Introduction

This contribution takes a different approach than mainstream methods, and

considers color barcodes that can be decoded under multiple illuminants without the

need to display a color palette or reference colors. Our strategy is to consider groups of k

color patches (with k ≥ 2), and model their evolution due to changing illuminant using

a low-dimensional linear subspace. Thus, each group of k colors (a barcode element) is

represented by one such subspace. When a group of k color patches is observed, our

algorithm does not attempt to decode each color independently. Instead, the whole

group is decoded by finding the nearest subspace in a dataset. We show experimentally

that this algorithm relatively enables information rate (average number of bits per
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bar) with very low probability of incorrect detection. In particular, our results show

that this algorithm has the potential to convey more information for the same area

than technology such as HCCB that requires display of the reference colors for correct

decoding. Our study borrows the idea of statistical modeling of joint color changes from

the work on color eigenflows by Miller and Tieu [51]. However, rather than trying to

represent the variation of all printable colors as a function of illuminant, we concentrate

on the variation of small groups of printed colors.

3.2 Information Rate

We assume that the patches in a color barcode are built from a set CN of N

reference patches1 A length k barcode element is an ordered set of k reference patches

extracted from CN . For reasons discussed in Sec. 3.4, we assume that the patches in a

barcode element are selected without replacement (i.e., all color patches in a barcode

element are different from each other). We also assume that only a subset Bk,x of the

set of all possible length k barcode elements Bk can be used to build a barcode, where

x denotes the proportion of elements of Bk in Bk,x (with 0 < x ≤ 1).

A barcode is the juxtaposition (in any spatial pattern) of n barcode elements,

resulting in K = nk bars. The information rate R of a barcode2 (measured in bits per

bar) is defined by the logarithm base 2 of the number of different symbol that can be

1Note that the words “patch” and “bar” are used interchangeably in this chapter to mean a region
with uniform color.

2Note that in communication theory, “information rate” usually represents the average entropy per
symbol. Our definition assumes that all symbols are equally likely.
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represented by the barcode, divided by the number of bars:

R =
1

k
log2

xN !

(N − k)!
(3.1)

Note that if k � N , the following approximation holds:

R ≈ log2N +
log2 x

k
(3.2)
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Figure 3.1: The maximum information rate R̄max(K) for a barcode that displays its reference

colors as a function of the barcode length K.

The goal of a barcode decoder is to infer the index of each observed barcode

element in Bk,x. The mainstream approach to color barcode decoding (e.g. [34, 53])

assumes that N patches in the barcode are reserved to display the reference colors. This

allows for faithful decoding by comparing the color of the patches in the barcode against

the displayed reference colors. However, this solution comes at the cost of reduced

information rate, since the N reference patches cannot be used to encode information.
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The information rate in this case is (assuming that each patch is decoded independently):

R̄(K,N) =

(
1− N

K

)
log2N (3.3)

It is instructive to compute the maximum information rate achievable with this system

as a function of the barcode length K (shown in Fig. 3.1 for K ≤ 120):

R̄max(K) = max
N

R̄(K,N) (3.4)

For example, the maximum information rate of a length 60 barcode that displays its

reference colors is of about 3 bits/bar, meaning that this barcode cannot carry more

than 180 bits. This value of information rate is obtained for N=16 reference colors.

Increasing the number of reference colors decreases the information rate for this barcode

length, as the gain due to the higher number of symbols that can be represented by each

bar is undermined by the fact that fewer patches are available for carrying information.

Along with the information rate, it is important to consider the error rate.

Let PE(k, x) be the probability of decoding error (incorrect identification) of a generic

barcode element in Bk,x. The probability of decoding error for the whole barcode,

assuming that decoding errors for the individual barcode elements in the barcode are

statistically independent events, is:

PE(K, k, x) = 1− (1− PE(k, x))K/k (3.5)

Note that, though a convenient working hypothesis, the assumption of independent

decoding error may not hold true in all situations, and should be tested experimentally.

Some qualitative considerations can be drawn from (3.1) and (3.5). The infor-

mation rate R grows linearly with log2N (as long as k � N) and with log2 x. Increasing
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k increases the information rate (note that the second term in the r.h.s. of (3.1) is neg-

ative), and this increase is all the more noticeable for small values of x. For example,

if x = 0.02, then increasing k from 3 to 4 adds almost 0.5 bits per bar. For what

concerns the probability of incorrect decoding, it grows with the number of bars K in

the barcode. The dependence of PE(k, x) on k and x is more complex, and is the object

of the work described in the next sections.

3.3 Barcode Element Decoding

3.3.1 The Dimensionality of Joint Color Spaces

Decoding a barcode element means finding its index in Bk,x based on the ob-

served colors c = [c1, . . . , ck]
T of its patches, where ci = [cRi , c

G
i , c

B
i ]T is an (R,G,B) color

vector. As well known, a variation of the illuminant spectrum determines a variation of

the perceived colors. A popular model to describe the observed color of a Lambertian

surface [45] assumes that the spectra of the surface reflectances and of the illuminants

live in finite-dimensional spaces of dimension Nref and Nill respectively. Thus, the ob-

served color of a surface s under a given illuminant is equal to

c(v) = Φsv (3.6)

where v is a vector of length Nill containing the coefficients of the illuminant with respect

to the chosen basis, and Φs is a full-rank 3 × Nill matrix whose entries are a function

of the illumination and reflectance basis vectors as well as of the spectral sensitivities

of the camera. Note that, since Nill ≥ 3 in general, the rank of Φs is 3, making the
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decoding of an individual color c hopeless without some prior knowledge of the scene

or of the illuminant. If, however, multiple colors seen under the same illuminant are

decoded at once, the task is less daunting. For example, consider the vector c(v) formed

by the colors in the barcode elements as defined above. Then c(v) = Φv with

ΦT = [ΦT
1 | . . . |ΦT

k ] (3.7)

where

rank(Φ) = min(3k,Nill) (3.8)

Hence, the vector c ∈ R3k is constrained to live in a subspace S of dimension of at most

Nill. This observation is critical for our decoding algorithm, as discussed next.

3.3.2 Joint Subspace Generation

Our decoding algorithm begins by modeling the subspaces S(i) of all length k

barcode elements. The use of linear subspaces as class models is based on the assump-

tion that the color vector c distribution in each barcode element class lies approximately

on a lower-dimensional subspace. We have considered two approaches to build these

subspace. In the first case, each barcode element is seen under a wide variety of il-

luminants, and a subspace of suitable dimension M is built from these observations

via Principal Component Analysis. In practice, one only needs to take images under

multiple illuminants of the N reference patches, build vectors c from these images for

each barcode element, and compute the SVD of the resulting matrix. This procedure

produces accurate subspace modeling; in practice, however, it may be unwieldy, be-
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cause each subspace depends on the color patches as well as on the characteristics of the

camera used to observe them. This means that the whole training procedure (including

taking pictures of the patches under different illuminants) would have to be repeated

each time a different camera is used or the colors are printed with a different printer.

We thus consider a second approach to subspace modeling, which, albeit less accurate,

enables a much simple training procedure. This approach relies on the diagonal (or Von

Kries) model of color changes [28], which assumes that each color channel changes as a

result of an illuminant change by a multiplicative factor that depends on the illuminant

but not on the reflectant:

cs(v2) = Dv1→v2cs(v1) (3.9)

where Dv1→v2 is a diagonal matrix. It is easy to see that, in this case, c(v) = Φv with

ΦT =


cR1 0 0 cR2 0 0 cR3 . . .

0 cG1 0 0 cG2 0 0 . . .

0 0 cB1 0 0 cB2 0 . . .

 (3.10)

The three columns of Φ form an orthogonal basis of the subspace. In practice, calibrating

the algorithm for a new camera or a new set of reference colors can be performed simply

by taking a single picture of all N reference patches under any illuminant. This allows

the system to immediately generate a basis for each barcode element by building the

corresponding matrix Φ.
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3.3.3 Nearest Subspace Decoding

Given the observed color vector c of a barcode element, we decode it by as-

signing it to the subspace S(i) that has the minimum distance to c (where the distance

of c to S(i) is defined in the usual way by the Euclidean distance between c and its

projection onto S(i)). Nearest subspace search is a common technique in Computer

Vision. It was shown by Basri et al. [11] that it is possible to map subspace S and

query item c to points in Rd′ for some d′, in such a way that the Euclidean distance

between these two points increases monotonically with the distance of c to S, thereby

enabling the use standard nearest neighborhood techniques (e.g. k-d trees) for barcode

element decoding.

3.3.4 Barcode Elements Subset Selection

Nearest subspace decoding produces a certain probability of error PE , defined

as the average probability of decoding error over all barcode elements. Note that PE

contributes to the probability of decoding error for a barcode formed by n barcode

elements as by (3.5). If PE is larger than desired, one may reduce the cardinality of

the subspace elements by only selecting a subset Bk,x of Bk. Intuitively, a smaller set

provides fewer opportunities for misclassification, at the cost of reduced information

rate.

Selection of a proportion x of barcode elements that minimizes the associated

PE is computationally very expensive. In particular, if one barcode element is removed

from Bk, the new empirical probability of error needs to be recomputed for all barcode
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elements. We have considered several techniques to reduce the complexity associated

with subset selection. One possible approach is to use subspace distance as an indicator

of the probability that two barcodes could be confused with each other. We adopt the

following definition of distance between two subspaces S1 and S2 with dimension d1 and

d2, respectively [65]:

dist2(S1,S2) = max(d1, d2)− ‖ΦT
1 Φ2‖F (3.11)

where Φ1, Φ2 are any orthonormal basis matrices of S1 and S2, respectively, and ‖ · ‖F

represents the Frobenius norm. Fig. 3.2 shows the effect of pairwise subspace distance

on the probability of error. More precisely, we considered all barcode elements that

could be built with N = 24 patches and k bars (see Sec. 3.4 for details about our exper-

imental dataset). We then estimated (via cross-validation over multiple illuminants) the

probability that the barcode element i is incorrectly decoded as j with i 6= j. Obviously,

the sum of all these probabilities, divided by the number of barcode elements, gives the

probability of incorrect decoding PE . To build the plot in Fig. 3.2, we ordered all length

k barcode element pairs according to decreasing distance. Then we computed the cumu-

lative sum of all probabilities of decoding i as j, divided by the number of barcodes. The

plot clearly shows that the contribution to the overall probability of decoding error PE

is due for the most part to the barcode element pairs that are closest to each other. This

suggests that barcode element subset selection could be accomplished based on pairwise

subspace distance. For example, for small k, we adopt the following greedy strategy.

Start from a barcode element chosen at random. At each iteration, add to the subset
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Figure 3.2: The cumulative probability of incorrect decoding as a function of the proportion

of ordered barcode element pairs considered for k = 3 (see text). All subspaces have dimension

of 2.

the barcode element that maximizes the minimum subspace distance to all barcode el-

ements already selected. For larger values of k, even this procedure may become too

computationally intensive, and we resort to a simpler strategy. First, we compute the

probability of incorrect decoding for each barcode element. Then, we build the subset

from the barcode elements that have the smallest probability of incorrect decoding.

3.4 Experiments

The reference color patches for our experiments were selected from a checker-

board of 512 colors, uniformly sampled in (R,G,B) color space, printed on paper by a

regular printer. Images were taken of the checkerboard with a Canon EOS 350D camera

in raw (CR2) format under 69 different lighting conditions (including direct sunlight,
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Figure 3.3: The 24 color patches selected for our tests. The first two rows contain the colors

for the tests with N=12.

diffuse skylight with overcast sky or under cast shadow, and various types of artificial

light). We selected ten representative illuminants by k-means clustering of the observed

color values of a white patch in the set.

We then selected two sets of reference color patches, C24 and C12 ⊂ C24 for

N = 24 and N = 12 respectively, using the greedy strategy introduced in Sec. 3.3.4.

The selected colors are shown in Fig. 3.3. Synthetic images of all barcode elements for

k ranging between two and five were built from the average color values of the images

of the reference color patches seen under the ten representative illuminants (where all

patches forming a barcode elements were seen under the same illuminant). For each

set of length k barcode elements, we extracted subsets with various proportion x as

discussed in Sec. 3.3.4. For each such subset, we computed the probability of incorrect

decoding PE(k, x) as follows. We ran five rounds of cross-validation, each time picking

five illuminants at random, learning the subspaces for each barcode element considered

based on its images under these illuminants, and testing each barcode element in turn
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on one of the remaining illuminants, randomly chosen. We counted the number of times

any barcode element was incorrectly decoded, and divided the result by the number of

cross-validation rounds (five) and by the number of barcode elements in the subset (equal

to x ·24!/(24−k)!). We also tested the decoding algorithm based on the diagonal model

discussed in Sec. 3.3.2. In this case, the color subspaces were built from observation of

the reference colors under just one illuminant. We ran five rounds of cross-validation,

each time selecting one illuminant at random (without repetition), training our model

on such illuminant and testing it with barcode elements seen under another randomly

chosen illuminant.

Fig. 3.4 shows the number of barcode elements (selected for k = 5 and x =

0.003 using the selection algorithm discussed at the end of Sec. 3.3.2) containing each

one of the 24 reference colors in C24. Note that 22 reference colors are chosen with

comparable probability; one color had much higher probability of being selected, while

another color was selected much less often than the others.

Fig. 3.5 shows the probability of incorrect decoding PE for barcode length k be-

tween two and five and for subspace dimension M between one and four (see Sec. 3.3.2).

Note that, for each k, there is an optimal value of the subspace dimension M , and that

the error increases for larger values of M . This may be due to the fact that increas-

ing the subspace dimension M may lead to overfitting and poor generalization. In the

experiments presented below, we chose to use M = 2 for k = 2, 3 and M = 3 for k = 4, 5.

Fig. 3.6 shows the probability of decoding error PE(k, x) for a generic barcode

element of length k between 2 and 5, using N = 12 and N = 24 reference colors, and for
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Figure 3.4: For each one of the 24 reference colors, the plot shows the number of barcode

elements selected with k = 5 and x = 0.003 containing that color.
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Figure 3.5: The probability PE of incorrect decoding as a function of the barcode element

length k and subspace dimension M from 1 (white bars) to 5 (black bars).
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various values of the subset proportion x, as a function of the resulting information rate

(as by (3.1)). Both types of subspace modeling (via PCA or via the diagonal model) are

considered. Fig. 3.7 shows the probability of decoding error PE(K, k, x) for a K length

barcode, computed using Eq. (3.5) for K = 60, 120, and 240.

The main observation that can be drawn from these results is that it is possible

to reach relatively high information rate with very low error rate. For example, PCA-

based subspace modeling for k = 5 and N = 24 results in a probability less than 0.001

of incorrect decoding of a length 60 barcode, while allowing one to encode information

at a rate of about 3.8 bits per bar. To put this result in context, let us recall from

Fig. 3.1 that the maximum information rate of a length 60 barcode that displays its

reference colors is of less than 3 bits per bar. Thus, our system allows one to pack

about 0.8 additional bits per bar (or 48 bits overall) in a length 60 barcode with very

low decoding error probability. One can easily infer from Eq. (3.1) that an information

rate of 3.8 bits/bar for a length 5 barcode element and N = 24 colors is achieved for

x = 0.103, and thus decoding each barcode element requires finding the nearest subspace

in a database of 524,288 elements.

The effect of the number of reference colors N , barcode element length k,

and subspace modeling algorithm on the resulting information rate and decoding error

probability are clear from Fig. 3.6 and 3.7. Increasing the number of reference colors N

allows one to achieve higher values of information rate. Longer barcode elements result

in lower decoding error probability for the same information rate. For this reason, we

do not allow color repetition in a barcode element. Repeating a color in a length k
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Figure 3.6: The probability incorrect detection PE(k, x) (on a logarithmic scale) for length k

barcode elements versus the information rate R (3.1). For each value of the barcode element

length k, a variable number of subset size proportions x were tested. ‘∗’: k=2; ‘+’: k=3; ‘�’:

k=4; ‘◦’: k=5. Continuous line: subspaces learnt via PCA over five illuminants. Dashed line:

diagonal model (4.6).
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Figure 3.7: The probability incorrect detection PE(K, k, x)(on a logarithmic scale) for a length

K barcode element formed by multiple length k barcode elements versus the information rate

(3.1). For each value of the barcode element length k, a variable number of subset size propor-

tions x were tested. ‘∗’: k=2; ‘+’: k=3; ‘�’: k=4; ‘◦’: k=5. Blue line: K=60; red line: K=120;

cyan line: K=240. Continuous line: subspaces learnt via PCA over five illuminants. Dashed

line: diagonal model (4.6).
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barcode is equivalent (for what concerns decoding) to include Bk−1 in Bk, leading to

a substantial increase of the decoding error for Bk. Using the diagonal model to build

joint color subspaces (which, as discussed in Sec. 3.3.2, allows for a fast calibration

procedure) leads to an increase of the decoding error rate by a factor of 10. Even so, for

moderately long barcodes (e.g. K = 60 bars), the decoding error probability remains

low (the probability of decoding error for a barcode with 60 bars is equal to 0.01 at

R = 3.8 bits per bar).

3.5 Conclusions

We have proposed a new algorithm for decoding barcode elements in a color

barcode that does not display its reference colors. Our experiments have shown that, by

carefully selecting a subset of barcode elements, it is possible to achieve good informa-

tion rate at low decoding error probability. Thus, this approach represents an efficient

alternative to mainstream barcode technology that requires display of the reference

colors, thereby limiting the effective information rate.

More research work is needed to compare the decoding error rate achieved by

our system with other sources of error in practical situations (for example, errors due to

blur-induced color mixing from two nearby patches or to printed color drift and fading).

As mentioned in Sec. 3.3.3, nearest neighbor search techniques can be used for finding

the closest subspace to a color vector by means of a mapping into a higher dimensional

space. We also address the issue of fast decoding in chapter 5.
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Chapter 4

Subspace-based Color Barcode Decoding

Using Reference Colors

4.1 Introduction

In this contribution, our focus is a more efficient and faster solution for de-

coding color information in a barcode. We consider color barcodes that can be decoded

under multiple illuminants with small number of reference patches of known colors, seen

under the same illuminant as the color to be decoded. The use of reference color patches

enables robust decoding with relatively low computational complexity which is suitable

for implementation on a low powered mobile device.

Displaying the reference colors in the barcode enables simple decoding strate-

gies. For example, one may compare each color patch to the reference colors, and select

the reference color that is closest to the color of the patch. At the same time, displaying
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all colors in the palette may be counterproductive, in terms of information rate, when

large palettes are used [53]. In other words, for large palette size N , the savings pro-

duced by a large variety of color palette are offset by the need to display all colors in

the palette. Based on this observation, we propose the use of fairly large palettes with

a limited number of reference colors displayed in the barcode. Rather than comparing

a color patch to a reference color, we modeled the joint color variation of the patch

and of the reference colors under varying illuminant by a low-dimensional linear space.

These subspaces (one per each color in the palette) can be learned offline with training

images taken under multiple illuminants. When decoding a barcode image, each patch

is analyzed individually, together with the reference colors. Decoding the patch color

becomes a problem of associating the vector formed by the patch color and the reference

colors to the closest subspace.

Our linear model is built under the assumption of Lambertian surface re-

flectance, and thus is liable to failure when substantial specular reflection is present in

the image. Since the barcode material (e.g. printed paper) is hardly Lambertian, a

specular component is to be expected when the barcode is viewed from an angle. We

extended our model assuming Lambertian reflectance to explicitly account for specular

reflection. We use the dichromatic model [60] to describe the appearance of a surface

under specular reflection, and show how this can be included in our subspace-based de-

coding approach, which is augmented based on the observed color of a white patch. The

experimental results on images taken under a wide variety of illuminants and viewing

angles show a substantial improvement (in terms of reduced decoding error rate) with
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respect to the original system that assumed Lambertian surface reflectance. In quanti-

tative terms, we show that, by using a palette with N = 20 colors and 4 reference colors

displayed in the barcode, we are able to encode a 128-bit message using 34 patches

overall with 0 decoding errors in our test set. Compared to the 4-color HCCB standard

that displays all 4 colors (and thus requires 68 patches to encode the same message),

we achieve a reduction of the barcode size by one half.

This contribution builds on our work described in chapter 4. However, rather

than considering groups of k color patches, we concentrate on the variation of one color

patch and r reference patches as a group of color patches to model their evolution due

to changing illuminant.

4.2 Background and Definitions

A color barcode is created from a set CN ∈ C of N colors (palette) and a set

Cr ∈ C of r reference colors. A color barcode of length K = n + r is defined as the

arrangement of n color patches, selected from the palette CN and used for information

encoding, and the r reference colors of Cr, in any spatial configuration. Decoding the

bar code means assigning the color of each one of the n information-carrying patches to

the index of the corresponding color in the palette CN . As with standard color barcodes

(e.g. HCCB), we assume that the position of the reference colors in the barcode is

known. In this work we showed that by carefully modeling the joint color variation as

a function of the illuminant, it is possible to use r < N reference colors and still obtain
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good decoding performance. In fact, we don’t even constrain the set of reference colors

Cr to be a subset of the color palette CN .

As defined in chapter 4, the information rate R of a barcode (reference colors

are not used) is defined by the logarithm base 2 of the number of different symbol that

can be represented by the barcode and measured in bits per bar. The information rate

for a barcode of K bars and r reference patches is defined as:

R(K, r) =
(

1− r

K

)
log2N (4.1)

Since each color patch carries log2N bits of information, the barcode carries n log2N

bits. In order to encode B bits, one needs this many color patches:

K = n+ r = dB/ log2Ne+ r (4.2)

Increasing the palette size N and reducing the number r of reference colors decreases

the size K of the barcode, resulting in higher information rate. For example, Fig. 4.1

shows the minimum length K of a color barcode that encodes a message of B = 128

bits as a function of the size of the color palette N and of the number of reference colors

r. (Note that the HCCB standard with N = r = 4 would require K = 68 color patches

for the same 128-bit message.) For a fixed number r of reference colors, the barcode

length K decreases monotonically with the size of the color palettes N . In contrast,

if the whole palette is represented by the reference colors (r = N), the plot of K at

N = 13 (K = 48), after which adding colors to the palette becomes counterproductive.

While the plot in Fig. 4.1 suggests that large palettes with few reference colors

lead to high information rate, it hides the fact that increasing the palette size typically
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Figure 4.1: The number of patches required to encode 128 bits versus the number of available

colors. The minimum number of colors to display the palette is 13 (circle).
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results in larger decoding error rates, which must be offset by adding more reference

colors. Let PE(N, r) is the probability of decoding error (that is, of misclassifying the

color of a patch) for a given palette CN and a given set of reference colors Cr. Assuming

that decoding errors are statistically independent events, the decoding error rate, that

is, the probability of decoding error for the barcode (i.e., of decoding at least one color

patch incorrectly) is equal to:

PE(N, r,K) = 1− (1− PE(N, r))K−r (4.3)

One may expect PE(N, r) to increase with increasing N (larger palette) and decrease

with increasing r (more reference colors). This is verified experimentally in Sec. 4.4.

This relation establishes a design trade-off between decoding error probability and in-

formation rate, mediated by the parameters N and r.

4.3 Color Barcode Decoding

4.3.1 The Lambertian Case

Consider a patch colored with the i-th color in the palette CN . The observed

color ci = [ci,R, ci,G, ci,B]T of this patch will vary as the illuminant changes (e.g., from

sunlight to artificial light), making color identification difficult. The key observation

we made in [7] is that the joint color variation of a set of color patches, all under

the same illumination, is bound by a linear constrain. For example, consider the 3(r +

1)–dimensional vector ei = [ci,d1, . . . ,dr]
T which includes the colors of the (known)

reference patches {dj}, with dj = [dj,R, dj,G, dj,B]T . If the surfaces are Lambertian, and

82



assuming that the illuminant spectra live in a finite-dimensional subspace of dimension

Nill, then the vector ei must live in a linear subspace Si of dimension equal to min(3(r+

1), Nill), which can be considered equal to Nill for r ≥ 1 [37, 63, 45]. Formally:

ei = Φiv (4.4)

where v is a Nill–vector that represents the illuminant, and Φi is a full-rank matrix that

characterizes the reflectivity of the patch surface1. The observed color ci of a single

surface under a given illuminant is equal to ci = Φciv. The decoding of ci would be

very difficult if no reference color is used. This is due to the fact that Nill ≥ 3 in general

([24], [54]), and the rank of Φci would be 3 which makes rank(Φci) small relative to Nill.

If, however, a color along with multiple reference colors seen under the same illuminant

is decoded at once, the probability of correct decoding will be higher due to ei ∈ R3(1+r)

and rank(Φi) = min(3(1 + r), Nill). The vector ei is constrained to live in a subspace

Si of dimension of at most Nill. It is useful to define the dimensionality ratio (DR) as

the ratio between the dimension of the embedding subspace Si and the dimension of ei:

DR =
Nill

3(r + 1)
(4.5)

This suggests a simple algorithm for decoding a generic color patch c: (1) Build the

vector e (by juxtaposing the observed color c with the observed colors of the reference

patches in the same barcode); (2) Find the subspace Si that is closest to the vector

e; (3) Decode c as i. Intuitively, the smaller the dimensionality ratio DR (itself an

decreasing function of r), the higher the robustness of this decoding algorithm with

1Note that Φi is also a function of the illumination and reflectance basis vectors as well as of the
spectral sensitivities of the camera assuming Lambertian characteristics of surfaces.
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respect to noise. This formalizes the intuitive notion that more reference colors should

ensure lower decoding error rates. The subspaces Si for 1 ≤ i ≤ N can be learnt from

observation of the colors in CN ∪ Cr under a wide variety of illuminants. If multiple

pictures of the color patches under different illuminants are impractical or impossible

to obtain, one may ”constrain” the embedding subspaces Si by means of the diagonal

(von Kries) model of color change [28]. The diagonal model assumes that each color

channel changes as a result of an illuminant change by a multiplicative factor. Indeed,

under the diagonal color model, the matrix Φi can be written as

ΦT
i =


ci,R 0 0 d1,R 0 0 d2,R · · ·

0 ci,G 0 0 d1,G 0 0 · · ·

0 0 ci,B 0 0 d1,B 0 · · ·

 (4.6)

It is easy to see that this matrix can be learnt from observation of the colors

under just one illumination. However, the resulting decoding error rate are typically

higher than with the “unconstrained” subspace approach.

4.3.2 The General Case

In the real world, surfaces are rarely Lambertian, and the reflected light should

be expected to contain a specular component. The amount of this specular component

depends on the surface characteristics and on the joint illumination/viewing geometry.

For color barcodes printed on paper, the specular component can be quite noticeable [6].

The dichromatic reflection model [61] for RGB pixel values is defined as follows:

c = m(b)c(b) +m(i)c(i) (4.7)
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The dichromatic model states that the observed color c of a surface is the sum of two

colors, c(b) (body reflection) and c(i) (interface reflection), weighted by coefficients m(b)

and m(i). The term m(b) and m(i) depend only on the viewing angle, illumination direc-

tion, and surface orientation. c(b) is the color of the body (or diffuse) reflection of the

material at a given pixel. c(i) is the color of the interface reflection which can represent

the illuminat color. If we assume that the spectral power distribution of the specular

reflection is similar to the spectral power distribution of the incident light, then the

approximate Lambertian reflection of a bright patch (e.g. white patch), which reflects

the maximum intensity of illuminant possibly for each color component, represents the

illuminant color. Thus, the dichromatic reflection model predicts that the specular re-

flection ”steers” the color of the surface towards the color of a white surface seen under

the same illuminant. This observation suggests that if the barcode contains a white

reference patch, the color of this white patch may be used to ”remove” the specular

component from the color of other patches, provided that one can somehow estimate

the coefficient m(i) at each patch. In practice, it is reasonable to assume that m(b) ≤ 1

and m(i) ≥ 0 for all illumination and viewing directions. It is also assumed that m(b)

is relatively insensitive to changes in viewpoint (and thus can be safely set it to 1). In

contrast, m(i) is highly viewpoint dependent.

Formally, we can model the color of the vector e defined in the previous section

as follows:

ei = Φiv + Wm(i) (4.8)

85



with

W = I⊗w =


w 0 0 · · ·

0 w 0 · · ·

...
...

...
. . .

 (4.9)

where I is the (r+1)×(r+1) identity matrix, ⊗ represents the Kronecker product, w is

the observed color of the white reference patch, and m(i) is a (r + 1)–vector containing

the interface reflection coefficients for all patches in e. This suggests that the subspace

approach used for the Lambertian case could be extended to the general case with

specularities, owing to the observed white patch. However, it should be noticed that

the presence of specular reflection increases the dimensionality2 of the embedding space

S to Nill + r. With respect to the Lambertian case, the dimensionality ratio DR is thus

increased by a factor of 1 + r/Nill, making decoding harder.

In order to keep the dimensionality ratio under control, in this work we assume

that m(i) is constant across patches for a fixed illuminant. This simplifying assumption

can be partly justified by the fact that, for a small sized planar barcode, the viewing

geometry can be considered approximately constant for all patches. Hence, assuming

constant m(i) across patches means neglecting the difference between interface reflection

coefficients for the different patches in the barcode. This approximation allows us to

rewrite Eq. (4.8) as follows:

ei =

[
Φi | V

] v

m(i)

 (4.10)

2Note that the white patch is assumed to be part of the reference colors. For this patch, the specular
reflection component is immaterial. This is the reason why the dimension of the embedding space is
Nill + r rather than Nill + r + 1.
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with V = [wT , . . . ,wT ]T obtained from the observed color of the white reference patch.

With this simplification, the dimensionality ratio DR is only increased by a factor of

1+1/Nill with respect to the Lambertian case. Note that the matrix Φi is computed from

training data in the absence of specular reflection. In practice, this can be achieved by

ensuring that, when taking training images, the color patches lie on a plane orthogonal

to the camera’s optical axis. Also note that, in order to compute the distance of the

vector e to a subspace Si, it is useful to first derive an orthogonal column basis for

[Φi|V], which can be achieved via QR decomposition by considering the first Nill + 1

columns of Q matrix.

4.3.3 Reference Color and Subspace Selection

The reference colors can be sampled from the C − CN colors that are not used

for the color palette CN . (Note that choosing reference colors from the palette would

increase the dimensionality ratio DR from Nill/3(r + 1) to Nill/3r, making decoding

harder.) We used a greedy recursive strategy for jointly selecting r reference colors

(with 1 ≤ r ≤ 5) and the dimensionality of the embedding subspaces {Si}, which was

kept constant across subspaces for given r. Reference patches are added one at a time.

To produce a certain PE(N, r) smaller than desired, one needs to find reference

colors within a set of colors. Selection of r number of reference colors that minimizes

the associated PE(N, r) is computationally very expensive. In particular, the probabil-

ity of incorrect decoding for all combinations of r reference colors from a large set of

colors needs to be evaluated. The suboptimal recursive greedy technique reduces the
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complexity associated with r reference colors selection. Our approach is to select one

reference color at a time to compute the PE(N, r). We select the reference colors from

the set C −CN that minimizes the PE(N, r). Given the current set of r reference colors,

all possible remaining C −CN − r colors and subspace dimensions from 1 to 5 are tested

using cross-validation over multiple illuminants, and the marginal error rates PE(N, r)

are computed. The reference color and subspace dimension (for subspace-based ap-

proach) that minimize the decoding error rate are selected and added to the set. For

r = 1, 2 the algorithm chose an embedding subspace dimension 3, while for r = 3, 4, 5

the chosen subspace dimension was of 4. The subspace dimension for diagonal model is

3 (Eq. (4.6)). The white patch was then added to the reference colors when the dichro-

matic model is used. Fig. 4.2 shows the probability of incorrect decoding PE(N, r) for

the number of reference colors r between one and five and the subspace dimension be-

tween one and five. In Fig. 4.2, the probability of incorrect decoding is very high if the

subspace dimension is 5 and r = 1. This may be due to the fact that increasing the

subspace dimension may lead to over fitting and poor generalization.

4.4 Experiments

We ran a number of experiments with color checkerboards printed on paper

with a regular color printer. Images were taken of the checkerboards with a Canon

EOS 350D camera in raw (CR2) format with a resolution of 3474× 2314 pixels and 12

bits per color channel. The raw format captures as closely as possible the radiometric
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Figure 4.2: The probability PE(N, r) of incorrect decoding as a function of the number of

reference colors r and subspace dimension from 1 (white) to 5 (black).
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characteristics of the scene which is the physical information about the light intensity

and color of the scene. The future sensors of mobile phones will be capable of capturing

images in raw RGB format.

4.4.1 Training Set and Model Construction

For our experiments, we printed a colorchecker with 125 colors on paper by

a regular printer, uniformly sampled in (R,G,B) color space. Images were taken of

this colorchecker from a a constant distance of about 1.5 meters, with the camera’s

optical axis orthogonal to the checkerboard to minimize specular reflections, under 32

different illumination conditions including indoor and outdoor under direct sunlight,

diffuse skylight with overcast sky, cloudy sky, or under cast shadow, and various types

of artificial light. The color values within each patch were averaged together to reduce

noise.

We select the color palettes C12 ⊂ C16 ⊂ C20 ⊂ C24. For each illuminant, we

clustered the colors of the patches using k-means with 24 clusters. We then selected

the 24 cluster centers with highest occurrences among all illuminants. We repeated the

same procedure to select the colors of the palettes for N= 20, 16 and 12, each time

starting from the palette chosen in the previous step. To make sure that the k-means

clustering selects 24 distinct colors, we run k-means 10 times with different starting

point to select N colors with highest occurrences in all runs.

The color of reference patches were selected from 125− 24 colors as described

in Sec. 4.3.3 for subspace-based method and diagonal model. The colors for reference
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Figure 4.3: A collage created with the chosen palette colors and reference colors, seen under

three different illuminant spectra. The patches are distributed in such a way that, in lexico-

graphic order, the first N patches form CN for N = 12, 16, 20, 24. Following are the 5 reference

colors chosen for the ”unconstrained” subspace decoding algorithm, followed by the 5 reference

patches chosen using the diagonal color model. The last patch is the white patch.

colors are different than the N = 24 colors since it is desired to build each vector e with

distinctive colors rather than allowing color repetition in the vector e, and reduce the

dimensionality ratio DR. Figure 4.3 shows selected 24 colors and 5 reference colors seen

under three different illuminants.

Along with the palette and the reference colors, we computed the embedding

subspaces (represented by the matrices {Φi}) for all combinations of palette size N and

number of reference patches r, using data from all 32 illumination conditions. Addition-

ally, we learnt the matrices {Φi} using the diagonal model (4.6) for all combinations

(N, r). However, since these matrices can be learnt from just one image, we created

32 versions of each Φi, one per illumination condition. The matrices {Φi} are used in

(4.10).
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Figure 4.4: Examples of images with the ”test” color checkerboard, used in our experimental

tests. The inset at each picture shows the brightness-rescaled, zoomed-in checkerboard detail.

4.4.2 Test Set and Results

We evaluated the performance of our proposed decoding algorithms using a

13× 12 ”test” color checkerboard with size of 16.5× 15 cm, printed with the same color

printer used for the ”training” checkerboard. The first six pairs of rows each contain

all 24 colors in the palette, in random order. The last row contains the five reference

colors selected for the unconstrained subspace model, followed by the five reference

colors chosen for the diagonal model and by two white patches. In order to facilitate

automatic checkerboard detection and patch localization in our pictures, we printed

a thick black edge outside the pattern, outlining a visible white frame (see Fig. 4.4).

(This design was inspired by the ARToolKit marker concept [39].) Of course, in a real

application, a smaller frame (or no frame at all) would have to be used.

We took 100 images from the test checkerboard under multiple illumination
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conditions, multiple viewing angles (ranging from −45 to 45 degrees with respect to the

normal to the checkerboard surface), and multiple distances (1 to 5 meters). Figure 4.4

shows some examples of our test images. Each color patch was automatically localized,

and color values within the central area of the patch were averaged together to reduce

noise (resulting in one color value per patch).

We evaluated the marginal error rate PE(N, r) for a combination of design

choices: (a) using the unconstrained vs. the diagonal subspace model (4.6); (b) using

the Lambertian reflection model (4.4) vs. the dichromatic reflection model (4.10). For

each design choice, we considered all combinations of parameters3 N and r. For each

pair (N, r) we used the associated matrices {Φi} learnt from the ”training” checkerboard

as discussed above.

When using the unconstrained subspace model, the error rate PE(N, r) was

given by the total number of color patches in the ”test” checkerboard that were in-

correctly decoded, divided by the number of images (100) and by the number of color

patches in the colorchecker (N × 6). The computation of the error rate using the diago-

nal model (4.6) is slightly different, as in this case there are 32 different versions of each

matrix Φi, one per illumination condition. We tested all such matrices, and computed

the error rate as the total number of color patches in the ”test” checkerboard that were

incorrectly decoded, divided by the number of images (100), by the number of color

patches in the colorchecker (N × 6), and by the number of illumination conditions in

3Note that, when using the dichromatic model, we added the white patch to the sets of reference
colors used for the Lambertian reflection model, resulting in a number of reference patches larger by
one.
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Figure 4.5: The probability PE(N, r,K) of decoding error for a 128-bit message as a function

of the total barcode length K, the palette size N , the number of reference colors r, and the

embedding subspace type. Black: N = 12; Blue: N = 16; Green: N = 20; Red: N = 24. ‘+’:

r = 1; ‘∗’: r = 2; ‘◦’: r = 3; ‘�’: r = 4; ‘×’: r = 5; ‘♦’: r = 6. Solid line: unconstrained

embedding subspace; Dotted line: diagonal model (4.6). Left: Assuming Lambertian reflectance

(4.4), with r ranging from 1 to 5. Right: Using the dichromatic reflection model (4.10), with r

ranging from 2 to 6 (the white patch was added to the chosen set of reference colors.)

the training dataset (32).

The resulting error rates PE(N, r,K) for a message with B = 128 bits are

shown in Fig. 4.5. As expected, the error rate decreases with increasing barcode length

K. The diagonal model is also shown to perform poorly compared to the unconstrained

model. Using the dichromatic model results in improved performance for large enough

r. Indeed, for N = 20 and r = 4, we achieve 0 error rate for K = 34 in our data set. This

is a very promising result, considering that the same parameters yield an error rate of
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0.07 using the Lambertian reflection model. To put this result in context, consider that,

as discussed in Sec. 4.2, a system that represents all the palette colors in the reference

set (N = r) requires a barcode of length K equal to at least 48 (for N = 13) to encode

128 bits. By using a smaller number of color patches and the dichromatic model, our

algorithm is able to pack the same amount of information in a barcode that is 30%

smaller. With respect to the HCCB system with N = r = 4 (which requires K = 68

patches for a 128-bit message), our algorithm allows for reduction of the barcode size

by half.

When using the diagonal model, an error rate of less than 0.001 is obtained

only for K ≥ 40. In this case, there is a smaller (but still significant) gain in terms

of information rate with respect to the case N = r. As discussed earlier, the practical

advantage of the diagonal model is that it requires only one picture of the color pattern,

rather than multiple pictures under a variety of illumination condition as needed by the

unconstrained subspace model.

4.5 Conclusions

We have introduced a new algorithm for color barcode decoding in presence of

specular reflection. Our experiments have shown that, by selecting up to 24 colors and

a small number of reference colors, it is possible to achieve higher information rate than

with mainstream color barcode decoding methods while ensuring low decoding error

rates. Future research will consider other sources of error such as due to blur-induced
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color mixing from two nearby patches or to color barcodes printed from different printers.
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Chapter 5

Color Barcode Decoding in Presence of

Blur-induced Color Mixing

5.1 Introduction

Color barcodes accessible by mobile devices become popular as an inexpensive

computing tool for information encoding. A mainstream approach to ensure robust

decoding is to use a color palette of barcode colors printed with the barcode. The color

palette contains all reference colors used to generate a barcode. Since the variation of a

patch color and of the corresponding reference color can be assumed to be consistent due

to changes such as device used, printer, and media, the patches of the barcode can be

decoded robustly. For example, the HCCB method [53] clusters the colors, and assigns

each cluster to one of the reference colors in the palette using the minimum distance.

One challenge facing such color clustering methods is that the color distribution of one
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class can overlap significantly with color distributions of other classes when a large

number of colors is used. Blur-induced color mixing from neighboring color patches

changes the color of patches. Therefore, such clustering techniques may not work well

for these situations.

Decoding a color barcode using mobile devices is even more challenging. In

mobile device applications, the printed color barcode is captured from different distances

and angles. The barcode images are more often out of focus since the device may focus

in different part of the image when the image is captured from relatively long distance.

Motion blur caused by camera shake while capturing an image contributes to decoding

error. In addition, barcode localization in the captured image can cause inaccurate

patch extraction in the barcode. Any or a combination of these factors could lead to

incorrect decoding.

None of previous decoding approaches have addressed color barcode decoding

in presence of blur-induced color mixing from neighboring color patches. In this con-

tribution, we introduce a new technique for decoding the color information in presence

of blur-induced color mixing using a small number of colors ensuring high information

density. The color mixing could be caused by incorrect focus, uniform or non-uniform

motion, long-distance image capture, inaccurate barcode boundary identification, and

perspective projection. Decoding error rate using mainstream methods in presence of

color mixing maybe high since each measured patch color is a linear combination of the

colors of the patch itself and its neighboring patches. Rather than decoding individ-

ual patches using a clustering method, our iterative algorithm decodes the colors of all
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patches across the barcode image by minimizing the overall observation error.

5.2 Color Barcode and Color Mixing Problem

In our color barcode decoding approach, the patches in a color barcode are

created from N reference colors. A color barcode can be defined as a spatial pattern

of n color patches for information encoding and a color palette of rN reference color

patches, resulting in a K = n+ rN element barcode.

Figure 5.1 shows an example of a color barcode with triangular color patches.

This barcode is made of m × k quarter square triangles (QST). A QST is a square

made up of four triangles (left, top, right, bottom) whose colors are selected from N

reference colors as shown in Figure 1 (top). In our decoding method, we assume that

N reference colors are displayed with the barcode as N× QST. Each triangular color

patch is surrounded by three other triangular patches with the same or different colors.

When a barcode is observed, a robust decoding can be achieved if the distance

between N clusters resulted from patch colors of the barcode is significantly large. Then

a patch can be decoded by comparing its measured color to one of the measured reference

colors in the palette using minimum distance. In contrast, when a color barcode is

observed in presence of blur, then the measured color does not represent the color of

the patch. In this case, the measured color is a mixed color resulted from the linear

combination of the patch color itself and the colors of its neighboring patches based on

the assumption that the device optical system is linear. Figure 5.2 shows examples of
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Figure 5.1: Top: Examples of quarter square triangles (QST). Bottom: Example of a color

barcode made of different QST.

a color barcode imaged from multiple distances and viewing angles, and blur-induced

color mixing from neighboring patches.

In case of short camera-barcode distance (assuming that images are taken at

frontoparallel view) with correct focus and no motion, color mixing occurs mostly along

patch boundaries, thus leaving the non-boundary pixels unaffected. In this case, the

central patch pixels can be used for decoding. However, the color mixing can occur in

entire patch area in presence of blur. In general, color mixing can be caused by following

factors or a combination of these factors. These factors include

1. Incorrect focus: incorrect focus is caused by a shift along the optical axis away

from the plane of best focus. This reduces the sharpness of the barcode image by

mixing colors of patches with their neighboring patch colors.
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2. Motion blur: the barcode image will appear blurred or smeared along the direction

of relative camera motion with respect to the barcode, thus causes color mixing.

3. Camera-barcode distance: barcodes within a certain range of distances from the

camera will appear in-focus in the barcode image. Barcodes further than this

range will begin to appear noticeably blurred. This has to do with camera depth

of field. The shallower the depth of field, the more quickly the blurring happens

with increasing distance.

4. Inaccurate barcode boundary identification: the edges obtained from barcode im-

ages are normally affected by blur. This leads to inaccurate barcode boundary

identification and patch extraction. In this case, the measured color of an ex-

tracted patch is resulted by mixing the color of the patch itself and the colors of

its neighboring patches.

5. Perspective projection: barcode images and their patches under perspective pro-

jection look distorted. This means that size of each patch is different in the barcode

image. Therefore, the amount of blur caused by incorrect focus, motion, or long

camera-barcode distance will not be uniform across a barcode image.

Clustering techniques and minimum distance classifier may not perform well

in presence of color mixing due to overlap of color distributions of one class with other

classes. Figure 5.3 illustrates examples of barcode images taken at different distances.

These images have been taken from relative close distances with correct focus and no

motion. Each cluster is built based on averaging the central patch pixels. No overlap
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Figure 5.2: Left: An example for a QST and its image extracted from a barcode image. Right:

examples of a color barcode imaged from multiple distances and viewing angles after perspective

projection correction.

between the clusters can be seen in RGB space. Figure 5.4 shows barcode images in

presence of blur caused by long camera-barcode distance, incorrect focus, or camera

shake. The color mixing occured in a subset of patches which creates color clusters with

a significant overlap that can lead to higher probability of decoding error if a minimum

distance classifier is used.

The advantage of using triangular color patches is that each patch has only

three neighboring patches and a linear mixing of only four colors is created as a result of

blur. Selection of patch shapes with larger number of edges may lead to higher decoding

error rate due to mixing of more colors from neighboring patches.

We use small number of colors in this project due to the fact that using large

number of colors causes significant overlps between color distributions of classes in

presence of blur-induced color mixing. In addition, the probability that more patches

within a barcode have at least one neighbor with the same color as the patch itself is

higher using small number of colors. This leads to more robust decoding since more
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neighboring patches have the same color. Therefore, it is beneficial to use small number

of colors.

5.3 Decoding Method

Let the 3-dimensional vector c̄i =
[
c̄Ri , c̄

G
i , c̄

B
i

]T
be the measured color of the

triangular patch i with (R,G,B) color vector resulted by linear color mixing. When a

color barcode is observed in presence of blur, our observation model is such that the

measured color at each triangular patch (c̄i) is a linear combination of the patch color

itself (ci) and the colors of its three neighboring patches (ci,1, ci,2, ci,3) with unknown

coefficients as

c̄i = wci + w1ci,1 + w2ci,2 + w3ci,3 (5.1)

w = 1− (w1 + w2 + w3) (5.2)

where v = [w,w1, w2, w3]
T are the linear coefficients. The index 1 for a triangular patch

is associated with the horizontal or vertical edge depending on the patch position in a

QST. The indices 2 and 3 are associated with two other edges clock-wise starting from

1 followed by 2 and 3. The linear coefficients are calculated differently based on the

position of a triangular patch in a QST. Let w = [wl, wt, wr, wb]
T be the amount of blur

induced by left, top, right and bottom sides of the barcode. In case of square patches we

could use w as the linear coefficients associated with four neighboring patches. In case

of triangular patches the linear coefficient associated with each edge is calculated as the

average of two elements of w depending on the direction of edge normal components as
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Figure 5.3: Examples of barcode images and corresponding average patch colors for barcode

images with correct focus.
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Figure 5.4: Examples of barcode images and corresponding average patch colors in presence

of blur.
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described in Equation 5.3 for left, top, right, and bottom triangular patches in a QST.

w1 w2 w3

left wl (wr + wt)/2 (wr + wb)/2

top wt (wr + wb)/2 (wl + wb)/2

right wr (wl + wb)/2 (wl + wt)/2

bottom wb (wl + wt)/2 (wr + wt)/2

(5.3)

Our assumption is that the amount of blur induced in different directions by w are less

than certain value and constrained to be uniform across the barcode image if the blur

is assumed to be uniform as well.

In our decoding approach, rather than decoding the individual patches inde-

pendently, we decode the colors of the patches that best justifies observed colors of all

patches. We know that each patch affects the colors of all its neighboring patches. For

this reason, we cannot determine the color of an individual patch without considering

all patches in the barcode. An iterative technique that decodes the colors of all patches

across the barcode image by minimizing the overall observation error (decomposed in

a sum of individual observation errors) can solve this decoding problem. The following

iterative algorithm summarizes the decoding a color barcode:

1. Determine the colors ek (for k = 1 . . . N) of the color palette and measure the

color c̄i of individual patches.

2. Initialize the color ci of the patch i by assigning a color from the palette with
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index k that minimizes the distance to c̄i

min
k
‖c̄i − ek‖ (5.4)

3. Select a set of values for w and compute the linear coefficients v using Eq. 5.3

and 5.2.

4. Compute the new color of each patch using Eq. 5.1

ĉi = (ci − (w1ci,1 + w2ci,2 + w3ci,3))/w (5.5)

5. Update the color ci of the patch i by assigning a color from the palette with index

k that minimizes the distance to ĉi

min
k
‖ĉi − ek‖ (5.6)

6. Compute the residual error h = ĉi − ci.

7. Repeat steps 4 to 6 until no changes in the residual error h observed.

8. Repeat steps 3 to 7 for a new set of values for w.

9. Select w and the colors assigned to the patches such that the sum of the squared

residuals
∑

j h
2
j is minimized.

One possible solution for this optimization problem is exhausive search. Ex-

hausive search systematically enumerates all possible candidates for the solution. The

candidate that minimizes the sum of the squared residulas at setp 9 is the solution. The

exhausive search visits all grid points in a bounded region. The main problem with this
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approach is that it uses a step size to enumerate which makes it hard to decide how fine

the grid should be. If the grid is too large, then the optimum solution may be missed. If

the grid is too small, computational cost explodes exponentially as a grid with M points

in one dimension will have MD points in D dimensions. Therefore, exhausitive search

can be used when the solution is bounded and a larger step size to enumerate possible

candidates is possible. In our case, a large step size may not lead to an optimal solution

since the amount of color mixing from one barcode image to another can be different.

Using alternative solvers such as global optimization tools may lead to faster and more

accurate solution. The global optimization methods we considered for our algorithm

include simulated annealing (SA), pattern search (PS), and genetic algorithm (GA). A

summary of these methods can be found in Appendix.

5.4 Experiments

5.4.1 Data Sets

For our experiments, we created a color barcode of 3.2× 3.2 cm2 with N = 3.

This barcode has 324 patches. The last three QST represent the color palette of the

barcode. We printed this test barcode on a paper by a regular printer. Our camera

is a 8 Megapixel smart phone camera (DROID RARZR M) with JPEG image format.

The user has no control over the automated non-linear (e.g. gamma) and white-point

correction applied by the camera. We took 715 images from our barcode under realistic

illumination conditions, viewing angles (ranging from ±30◦ with respect to the normal
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Figure 5.5: Examples of barcode images after perspective projection correction taken at mul-

tiple distances and viewing angle.

to the barcode surface), and multiple distances ranging approximately between 55 to

140 cm. The quality of barcode images can vary from one image to another due to

motion, incorrect focus, and camera-barcode distance, viewing angle, JEPG format,

and automated corrections by the camera (Figure 5.5).

The number of images taken in fronto-parallel view with correct focus is 351

and in presence of blur is 105. The number of images under perspective projection with

correct focus is 224 and in presence of blur is 35. We extracted the barcodes from the

images by selecting a rectangular region of interest manually containing the barcode.

Canny edge detection is used to identify the edges of the barcode which can be used to

undo the perspective projection of the barcode image to a square shaped barcode. We

extracted each patch based on the knowledge about the pixel dimension of the barcode

image and the number of the patches arrangement in the barcode.

The choice of N colors to build the barcode is relatively trivial. We have

chosen the colors of the palette as Red, Green, and Blue. These colors have the largest
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distance from each other in the RGB color space. Red, Green, and Blue are used as the

primary for additive combination of colors, as in superimposing of projected lights or

in CRT displays as well.

5.4.2 Global Optimization Methods

We also evaluate our decoding algorithm using three different global optimiza-

tion methods. The objective function is the function describe in Sec. 5.3 is the function

that we want to minimize. Global Optimization algorithms attempt to find the global

minimum of the objective function. These methods works well with objective func-

tions that are not differentiable, or are not even continuous. They do not require any

information about the gradient of the objective function.

Figure 5.6 shows six barcode images with their objective function values of

the best point at each iteration. The solution w for each method is also shown. The

number of objective function evaluation at each interartion for each method is different.

Typically, the objective function values drop rapidly at the early iterations and then

level off approaching the optimal value.

Table 5.2 shows the number of patches decoded incorrectly for each method.

Typically, all three methods converge quickly with uniform distribution of wi as expected

if the barcode image is in-focus and taken from a short distance as shown in image f).

All optimization methods including exhaustive serach produces less number of patches

decoded incorrectly than the minimum distance method.
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Figure 5.6: Left: various color barcodes. Middle: objective functions vs. number of iterations.

Right: linear coeffiecents for various solvers.
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Patch Size [pixel] ES SA PS GA MD

a) 64 3 2 2 2 19

b) 49 0 0 0 0 11

c) 49 0 0 0 0 24

d) 42 9 8 6 6 26

e) 42 7 10 4 5 25

f) 64 0 0 0 0 0

Table 5.2: Comparative results in terms of number of patches decoded incorrectly for the

barcode images in Figure 5.6. The barcode has a total of 324 patches with 12 reference color

patches. Methods: exhaustive search (ES), simulated annealing (SA), pattern search (PS),

genetic algorithm (GA), minimum distace (MD).

5.4.3 Performance Evaluation

We evaluated our algorithm using exhaustive search, three global optimization

methods, and the minimum distance method using all 715 barcode images. We used the

average patch pixels in our methods and the average of 3× 3 central patch pixels in the

minimum distance method to compare with the reference colors in the palette. Using

all pixels in the patch would lead to much higher decoding error in minimum distance

method due to mix of colors on the patch boarders. In contrast using 3 × 3 central

patch pixels in our method would lead to higher decoding error since the average color
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of central patch pixels does not represent the mix color resulted from the color of the

patch itself and the colors of its three neighboring patches.

To determine the search range in w, we run the algorithm on 100 images

randomly selected from our data set. We selected a range of [0, 0.5] for each of elements

of w with a step size of 0.0333 to reduce the computation time due to a 4 degrees of

freedom. Then, we select the range of w to [0, 0.2] for our methods by determining

the min and max of all elements of w found for these 100 images. We chose the same

step size of 0.0333 for exhausive search method, which tries 2401 different w to find the

optimum solution.

The implementation of our algorithm is in Matlab. We use the Matlab Global

Optimization Toolbox for simulaed annealing, pattern search and genetic algorithm. An

optimized and real-time implementation of a chosen optimization method on a cellphone

is left for future work. Based on our observation, the number of iterations at step 7

described in Sec. 5.3 varies between 1 and 6 with an average of 3 iterations when we

use exhaustive search method. We used a laptop (Intel i5-2520M CPU @ 2.50GHz) to

measure the execution time to compute the w for our barcode. The execution time

for exhasitive search, simulated annealing, pattern search, and genetic algorithm are

approximately 73, 11, 9, and 49 seconds respectively using our Matlab implementation.

To evaluate and compare the performance of our algorithm using different

solvers with the minimum distance method, we define the empirical probability of de-

coding error P (p) for each patch size p (number of pixels per patch) as described in

chapter 4. P (p) is defined as the number of color patches, which were incorrectly de-
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coded, divided by the number of the barcode images (with the same patch size), and

by the number of color patches in the barcode (312). Figure 5.7 shows the empirical

probability of decoding error vs. the number of pixels per patch.

As described in chapter 5, the probability of decoding error forB bits, assuming

the decoding errors for the individual colors in the barcode are statistically independent

events, is:

PB(B, p) = 1− (1− P (p))n (5.7)

n = dB/ log2Ne (5.8)

The probability of decoding error increases with the number of bits. Figure 5.8 shows

the probability of decoding error of n = 81 color patches (using N = 3) that represents

B = 128 bits (which represents an Internet Protocol Version 6 address (IPv6)) vs. the

approximate camera-barcode distance. The approximate camera-barcode distance can

be determined by the assumption that the ratio of the barcode height on the sensor and

the real barcode height is the same as the ratio of the focal length and the distance to

the barcode. Therefore, the approximate camera-barcode distance can be formulated

as

d = f
bH

sG
(5.9)

where f is the focal length of the camera, b is the physical height of the barcode, s is

the sensor height, G is the barcode height in the image in pixels, and H is the image

height in pixels.

The basic conclusion from our results (Figure 5.7 and 5.8) is that, for the same
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Figure 5.7: The empirical probability of decoding error vs. the number of pixels per patch.

Dashed line: images taken in fronto-parallel view with correct focus. Solid line: all images in the

data set used. Methods: minimum distace (MD), exhaustive search (ES), simulated annealing

(SA), pattern search (PS), genetic algorithm (GA).
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Figure 5.8: The probability of decoding error of 81 patches (B = 128 bits) vs. the approximate

barcode-camera distance. Dashed line: images taken in fronto-parallel view with correct focus.

Solid line: all images in the data set used. Methods: minimum distace (MD), exhaustive search

(ES), simulated annealing (SA), pattern search (PS), genetic algorithm (GA).
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color barcode, our algorithm can decode far more robustly in presence of blur than the

minimum distance method. The performance of all three optimization methods and the

exhaustive search is overall similar. However, the pattern search method takes less time

to decode our color barcode and shows slightly better performance in presence of blur.

As described in previous chapter, one way to increase the information density

within a given barcode space is to increase the number of colors. This requires larger

number of pixels per patch (short camera-barcode distance) to ensure robust decoding.

Our method described in Sec. 5.3 is able to decode the same barcode with smaller patch

size which means that more patches can be packed in the same barcode space, thus

increasing the information density.

To put our results in context, the minimum number of pixels per patch to

decode robustly (with zero probability error as shwon in Figure 5.7) is 81 in minimum

distance method and 49 in our method when the barcode is captured from a fronto-

parallel view with correct focus. This indicates that a color barcode system that uses

our decoding approach requires 40% less space to encode 128 bits using only N = 3

colors. A color barcode system that uses the minimum distance method with N = 7

reference colors can encode 128 bits in the same space as our decoding method. Note

that the color palette of multiple copies of N = 7 colors occupies more space on a

barcode and cannot be used to encode information.

In more difficult situation, where the barcode image is captured in presence

of blur and/or from a viewing angle ranging ±30◦, a robust decoding can be achieved

with 90 pixels per patch using minimum distance method and 72 pixels per patch using
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our method. In this case, our method requires 20% less space to encode 128 bits. The

minimum distance method using N = 4 reference colors could encode 128 bits in the

same space as our decoding method.

5.5 Conclusions

We have presented a new algorithm for color barcode decoding that can handle

barcode images in presence of blur using a smart phone camera images. Rather than

clustering the colors of the barcode and decoding the patches using minimum distance

method, our iterative algorithm decodes the colors of all patches across the barcode

by minimizing the overall observation error. The global optimization methods such

pattern search and simulated annealing find the optimal solution faster than exhaustive

search and genetic algorithm. These two algorithms may be considered for real time

implementation on a cell phone in future.

Our decoding approach enables higher information rate in a given space by

allwoing smaller patch size compared to mainstream methods. We show that our method

enables to encode 20% to 40% more information in presence of color mixing using only

three colors for the same barcode area than the technologies using minimum distance

method.
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Chapter 6

Future Work

In this thesis, analysis, and justification for novel and robust algorithms, ap-

plicable to color target detection and color information access problems are developed.

Experiments on real data demonstrate the effectiveness of the presented methods, and

its practicality for real applications. The author hopes that the work presented here

serves as a way for the future researchers in this field of research. In this section, we

outline a few of the open questions related to the research presented in this thesis. In

particular, we offer possible extensions to some of the chapters.

• In Chapter 2, we introduced a new detection algorithm that is suitable for multi-

color, pie-shaped markers. The proposed algorithm is computationally very light

and has excellent performance in terms of detection rate and false alarm rate.

Compared with a popular grayscale marker (ARToolKit), our color markers en-

able more robust detection in various realistic conditions for a similar processing

time. One possible extension to our detection algorithm is to improve the perfor-
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mance of the algorithm in low light conditions. This may be a crucial requirment

in a cell phone-based system that uses environmental labeling for blind wayfinding

in an environment with low light conditions.

• In Chapter 4, we introduced a new color barcode decoding approach that requires

few reference colors attached to the color barcode and can handle the presence

of specular reflection. Our experiments have shown that, by carefully selecting a

set of reference colors, it is possible to achieve a high information rate at a low

probability of decoding error with relatively low computational complexity. The

robustness of our algorithm has not been proven when the barcodes are printed by

different printers. Therefore, one important extension for our method is to ensure

robust decoding of color barcodes that are printed from different printers.

• In Chapter 5, we have presented a new algorithm for color barcode decoding that

can handle barcode images in presence of uniform blur across the barcode image

using only three reference colors ensuring higher information density than main-

stream approaches. One possible extension to our algorithm is robust decoding in

presence of non-uniform blur across the barcode image. This could improve the

decoding performance when barcode images are under perspective projection or

barcodes printed on non-planar surfaces. Investigation of real time implmentation

considering three global optimization methods would be a possible extension to

our algorithm as well.
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Appendix A

Color Image Formation and Bilinear

Method

In this appendix, we review the color image formation and bilinear method

[71]. For a Lambertian surface, the measured intensity ρc of channel c ∈ [r, g, b] is

ρc = g

∫
λ
fc(λ)s(λ)l(λ)dλ (A.1)

g is the scaling factor. fc(λ) is the camera sensitivity function of channel c; s(λ) and

l(λ) denote the reflectance and light spectrums respectively. λ is the wavelength. The

equivalent vector representation of this equation is formulated as follows by discretizing

the reflectance s, light spectrum l and camera sensitivity function fc into N samples as

column vectors

ρc = glTD(fc)s (A.2)

where D(fc) is a N × N diagonal matrix with fc as diagonal elements. The finite di-

mensional linear models for both reflectance [46, 54] and illumination spectrum [37, 63],
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assuming the reflectance and iluumination spectrum are spanned by the column spaces

of the matrices Bs and Bl respectively. The reflectance and iluumination spectrum can

be reformulated as

s = Bsw

l = Blv

(A.3)

where w ∈ Rnw and v ∈ Rnv are coefficient vectors with much lower dimensionality than

N . In previous research, it has been shown that both the natural light spectrum [37, 63]

and reflectance [46, 54] can be accurately approximated with such low dimensional

subspaces. The bilinear model for color image formation for color channel c is formulated

as follows

ρc = vT gBT
l D(fc)Bsw

ρc = vTφc

(A.4)

The bilinear model for three color channels is

ρ = Φv (A.5)
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Appendix B

Simulated Annealing

In this appendix, we review the simulated annealing algorithm. The details

of the simulated annealing (SA) algorithm can be found in [36]. Basically, SA models

the process of heating a material followed by lowering slowly the temperature to de-

crease defects, thus minimizing the system energy. A new point is randomly generated

at each iteration of the SA algorithm. The distance of the new point from the current

point, or the extent of the search, is based on a probability distribution with a scale

proportional to the temperature. The algorithm accepts all new points that lower the

objective function, but also, with a certain probability, points that raise the objective

function. By accepting points that raise the objective function, the algorithm avoids

being trapped in local minima, and is able to explore globally for more possible solu-

tions. An annealing schedule is selected to systematically decrease the temperature as

the algorithm proceeds. As the temperature decreases, the algorithm reduces the extent

of its search to converge to a minimum. The temperature is a parameter that affects
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the distance of a trial point from the current point and the probability of accepting a

trial point with higher objective function value. Temperature decreases with a paced as

the algorithm proceeds. The faster the temperature decrease, the shorter the execution

time is, but the probabiltiy of finding an optimal solution decreases. The temperature

is a function of the Annealing Parameter, which is a proxy for the iteration number.

Annealing controlls the temperature to ensure that an optimal solution reaches. Rean-

nealing increases the temperature after the algorithm accepts a certain number of new

points, and starts the search again at the higher temperature to avoid the algorithm

trapped in local minima. The algorithm selects the distance of a new point from the

current point by a uniform distribution with a a step length that is equal to the cur-

rent temperature. The algorithm determines whether the new point is better than the

current point. If the new point is better than the current point, it becomes the next

point. If the new point is worse than the current point, the algorithm can still make it

the next point. The algorithm accepts a worse point based on an acceptance function:

1

1 + exp
∆E

max(T )

(B.1)

where ∆E is the difference between the new objective and old objective function values

and T is the current tempreture. Smaller acceptance probability is achieved by smaller

temperature. A larger ∆E leads to smaller acceptance probability. The algorithm

decreases the temperature and stores the best point found so far. The following function

is used to update the temperature:

T = T0 × 0.95k (B.2)
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where T0 is the initial temprature, and k is the iteration number until reannealing.

Reannealing sets the k value to lower value than the iteration number, therefore the

temperature increases. k is estimated based on the value of estimated gradients of the

objective function in each dimension as follows:

k = log

(
T0 ×max(si)

T × sd

)
(B.3)

where T0 is the initial temprature, T is the current annealing, sd is the gradient of

objective function in direction d times difference of bounds in direction d.
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Appendix C

Pattern Search

In this appendix, we review the pattern search algorithm. A suffiecent num-

ber of litrature can be found about pattern search (PS) [5, 21, 3, 4, 41, 42, 44]. A

pattern search algorithm searches a set of points around the current point, selecting

the point that makes the objective function lower than the value at the current point.

There are variety of pattern search algorithms such as the generalized pattern search,

the generating set search, and the mesh adaptive search. We consider the generalized

pattern search for our experiements. Other pattern search variations could be consid-

ered in future work. Basically, the algorithm computes a series of points that approach

an optimal solution. It searches a mesh (a set of points around the current point) at

each step. The mesh is created by including the current point to a scalar multiple of

a set of vectors called a pattern. If the algorithm evaluates a point in the mesh that

lowers the objective function than the current point, then the new point replaces the

new point at the next step of the algorithm. The algorithm uses fixed direction vectors
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that the pattern search algorithm uses to determine which points to search at each

iteration. The algorithm uses a set of vectors vi as a pattern to evaluate which points

to search at each iteration. The set vi is created based on the number of independent

variables in the objective function, and the positive basis set. The positive basis sets in

the algorithm is the maximal basis with 2N vectors. The group of vectors that create

the pattern are fixed-direction vectors. In our case, there are four independent variables

in the minimization problem, the default for a 2N positive basis consists of the following

pattern vectors:

v1 = [1 0 0 0] v2 = [0 1 0 0] v3 = [0 0 1 0] v4 = [0 0 0 1]

v5 = [−1 0 0 0] v6 = [0 − 1 0 0] v7 = [0 0 − 1 0] v8 = [0 0 0 − 1]

(C.1)

PS searches a point among a set of points that minimizes the objective function at each

iteration. This point becomes the current point if its objective function value is less

than that of the current point. A set of points is created based on generating a set of

vectors wi by multiplying each pattern vector vi by a scalar α and adding the wi to

the current point. The scalar α is multiplied by a number greater than one (e.g. 2) if

the point replaces the current point and by a number smaller than one (e.g. 0.5) if the

current point remains unchanged. The algorithm halts the search when the distance

from the previous point to the current point is less than a value, or α is less than a

tolerance value, or the difference between the objective function value at the previous

point and objective function value at the current point is less than a value.
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Appendix D

Genetic Algorithm

In this appendix, we review the genetic algorithm. There are sufficient number

of lituratue about Genetic Algorithms [32, 19, 20]. In this section, we briefly describe

the genetic algorithm we used to solve the minimization problem described in Sec. 5.3.

The genetic algorithm (GA) is a method based on natural selection similar to the bio-

logical evolution process. The genetic algorithm generates a population of points and

constantly modifies the current population. Basically, at each interation, the GA ran-

domly selects points from the current population as parents to produce the children of

next generation. The population gradually evolves over successive generations whose

best point approaches an optimal solution. At each iteration, the genetic algorithm

creates the next generation from the current population based on selection of parents,

combining two parents, and random changes to individual parents. A population has

high diversity if the average distance between points within the population is large.

The genetic algorithm uses diversity to search a larger region. The best fitness value
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(objective function value) for a population is the smallest fitness value for any point

in the population. The algorithm begins by generating an initial population randomly.

Then, at each iteration, the algorithm uses the current population to create the chil-

dren of the next generation. The algorithm selects a group of points (parents) in the

current population. The algorithm usually selects points with better fitness values as

parents. The GA generates three types of children for the next generation including

elite, crossover, and mutation. Elite children are the points in the current generation

with the best fitness values. These points automatically survive to the next generation.

Crossover children are generated based on combination of a pair of parents in the cur-

rent population. The crossover procedure randomly selects an entry from one of the

two parents vectors and assigns it to the same coordinate of the child vector. Mutation

children are generated based on introducing random changes to a single parent. This

process is repeated until a termination condition has been reached. For instance, the

algorithm terminates if a solution is found that satisfies minimum criteria.
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