Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Integrative Radiomics Models To Predict Biopsy Results For Negative Prostate MRI

Abstract

Multi-parametric MRI (mpMRI) is a powerful non-invasive tool for diagnosing prostate cancer (PCa) and is widely recommended to be performed before prostate biopsies. Prostate Imaging Reporting and Data System version (PI-RADS) is used to interpret mpMRI. However, when the pre-biopsy mpMRI is negative, PI-RADS 1 or 2, there exists no consensus on which patients should undergo prostate biopsies. Recently, radiomics has shown great abilities in quantitative imaging analysis with outstanding performance on computer-aid diagnosis tasks. We proposed an integrative radiomics-based approach to predict the prostate biopsy results when pre-biopsy mpMRI is negative. Specifically, the proposed approach combined radiomics features and clinical features with machine learning to stratify positive and negative biopsy groups among negative mpMRI patients. We retrospectively reviewed all clinical prostate MRIs and identified 330 negative mpMRI scans, followed by biopsy results. Our proposed model was trained and validated with 10-fold cross-validation and reached the negative predicted value (NPV) of 0.99, the sensitivity of 0.88, and the specificity of 0.63 in receiver operating characteristic (ROC) analysis. Compared with results from existing methods, ours achieved 11.2% higher NPV and 87.2% higher sensitivity with a cost of 23.2% less specificity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View