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Abstract

Bayesian methodology is developed to chose the sample size in
complex problems where testing a null hypothesis is of interest. The
approach permits propagation of uncertainty in quantities which are
unknown, and permits computation of power and type I error. A
graphical diagnostic is used to assess the sensitivity of the design to
model specification and sample size specification. The sample size
is chosen large enough to provide a pre-specified probability that the
Bayes factor between the null and alternative hypothesis is larger than
a cut-off. We develop methodology for models with covariates with
uncertain distributions and treatments, to multivariate, unbalanced
and missing response data.

We apply the methodology to a repeated measures random effects
model with a predictive prior based on data from an earlier study.

Key Words: Bayes Factor; Experimental Design; Hierarchical Model; Prior

Predictions.
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1 Introduction

The goal of a medical study is often stated as an interest in testing a null
versus an alternative hypothesis. Previously, Bayesian methodology has been
used to choose the sample size to guarantee frequentist power for a classi-
cal test of hypothesis (Freedman and Spiegelhalter 1983; Spiegelhalter and
Freedman 1986) and to choose the sample size to reduce the posterior vari-
ance to a prespecified size or to guarantee a fixed level of posterior coverage
in an interval of specific size. For references and a review of Bayesian sample
size selection methods, see Adcock (1997). Miiller and Parmigiani (1995) is
quite close in spirit to the current work. They give examples of sample size
specification for estimating a binomial probability and for a survival analysis
where parameter estimation is of interest. They minimize various loss func-
tions to choose the sample size and use Monte Carlo simulations to estimate
the utilities of various sample sizes. However, they do not give methodology

for testing a hypothesis.

The Bayesian tool for testing a hypothesis is a Bayes factor. Weiss (1997)
and Verdinelli (1996) independently introduced the idea of choosing the sam-
ple size to guarantee that the Bayes factor is larger than a certain prespecified
size. Both illustrated the methodology in the case of a simple null hypothesis
Ho : p = 0 versus H, : u # 0 for independent and identically distributed

data y;|p ~ N(u, ), for 7 known.



Algebraically, let Y denote the data, let Hy and H; be the competing
hypotheses with parameters 65, sampling distributions f(Y'|0;, Hx) and priors
p(0x|Hy) for k = 0,1. Then f(Y|Hy) = [ f(Y0, Hy)p(0|Hy)dOy for k = 0,1

are the prior predictive distributions. The Bayes factor is

Y|y
Bor =5 vm,)

and define bg; = log By; as the log Bayes factor in favor of Hy against H;.
Kass and Raftery (1995) suggest by greater than 43 or less than —3 consti-
tute strong support for or against Hy respectively; and by > 5 or bgy < —5

is said to constitute very strong support for Hy or H; respectively.

The goal of the design is to select the sample size n and possibly other
aspects of the design so that the prior predictive probabilities po(ag) =
P(bor > aolHp) and/or pi(—ay) = P(byy < —aq|Hy) are suitably large for
some ag,a; > 0. We explore choices of ag = a; equal to 3 or 5 in our ex-
ample. Instead of specifying cutoffs a; on bgy, another approach is to choose
n so that the posterior probability that Hy is greater than by is large for
k=0,1and 0 < b, < 1. Let m be the prior probability of Hy then taking
ar = log[(1—by)m/(brmo)] accomplishes this and leads to the same methodol-
ogy as before. Verdinelli (1996) chooses n to make mopo(log 3) + m1p1(— log 3)
larger than a pre-specified probability. In the absence of prior probabilities
p(Hy), we might pick n to make the sum po(3)+p1(—3) > *, with 0 < a* < 2.

This effectively takes p(Hy) = .5.



An alternative method of sample size specification is to find 1 g5(n), the
5" percentage point of the distribution p(bgi|Hy), as a function of n, and
choose n so that P(byr < tos(n)|Hy) > .8 (Weiss 1997). This treatment
of the Bayes factor is classical in nature. Specifically, it is an empirical
Bayes approach; use a Bayesian prior at all levels below the top level to
integrate out so-called nuisance parameters. Then use a classical approach
at the top level. In the testing paradigm, the top level is the two hypotheses.
The hypotheses are of interest, and parameter estimates are not of interest,

although obviously a careful data analysis would report posterior estimates.

Unlike the situations studied in Weiss (1997) and Verdinelli (1996), it is
often impossible to algebraically calculate the prior predictive distribution of
boy given Hy or Hy. We then use a combination of Monte Carlo simulation,
algebraic calculations and numerical integration to study p(bet|Hy), k = 0,1
for a complex model and set of hypotheses. Specification of appropriate
priors is the subject of considerable ongoing research; we use a predictive
prior (Weiss, Wang and Ibrahim 1997) based on a previous experiment as
the prior under Hj. In the next section we discuss some issues involved with
the modeling and the calculation of Bayes factors. In section 3, we outline a
general algorithm to simulate the distributions p(bo1|Hy), k = 0,1 for design
problems with covariates, missing and multivariate data. Section 4 illustrates
the problem of choosing a sample size for a complicated hierarchical repeated

measures data random effects model based on a prior study. The paper closes



with a short discussion.

2 Covariates, Missing Data and Bayes factors

We assume a proper prior is available for the parameters §; under the re-
spective hypotheses Hj. However, this is not enough; in a general situation,
the sampling density of ¥ depends not only on parameters # but also on
covariates X which may or may not be completely under the control of the
experimenter and whose distribution may or may not be fully known. A
model for the covariate density is needed to properly simulate the prior pre-
dictive distribution of the Bayes factors under Hy. Some covariates are simple
to model as for example a randomized binary treatment indicator, which can
be modeled as a Bernoulli random variable with probability of success equal
to m = .5. Continuous covariates such as age or disease score can be more
complicated to model, although a transformation, such as for example, an
inverse empirical cumulative distribution function or a power transformation,
may permit them to be modeled either as uniform or normal random vari-
ables. A kernel density estimate might be used to estimate a low dimensional

density. Correlated covariates may in general be difficult to model.

In designing a study to be analyzed with a nontrivial statistical model,
it is important to take uncertainty in the covariate values into account when

assessing the uncertainty in outcomes of the proposed experiment. When



we make an assumption that X has density ¢g(X) when the distribution is
unknown conditions on information not actually held. Fixing a known set of
covariates or distributions results in summaries about the possible outcomes
of the proposed experiment that are conditional. Unconditional predictions
from a particular sample size about possible experimental results are partic-
ularly important for funding agencies and the experimenter in assessing the
potential value of a particular proposed sample size. Occasionally conditional
predictions can also be of interest when interest lies in the properties of a de-
sign conditional on some important event, although that event is most likely
to involve the parameters or predictions of interest and not the covariates or

their distributions.

When a sample z;, j = 1,...,.J of continuous m-dimensional covariates is
available as prior information, a simple approach to modeling the joint distri-
bution is to use a kernal density estimator. Let H(x) be the m-dimensional
kernel; assume H(x) is easy to draw from. Then a draw from the kernel
density estimate is generated by first drawing x from H(zx), and selecting a
point z; from the set of previously observed X’s at random. The draw from

the kernel density is @ 4+ x;. For choice of kernels, see Scott (1992).

In general, we model the sampling distribution ¢(X|¢) for the covariates
given unknown parameters ¢. We set up a prior ¢(¢) for ¢ using preliminary
data and substantive knowledge about the population. Often, a previous ex-

periment or other information source for the priors p(8x| Hy) will additionally



provide information about ¢(X|¢) and ¢g(¢). Assuming that ¢ and X|¢ are
independent of #;, and k the index of the hypothesis, we have

Result 1.

JJFYIX, 00, Ho)g(X|9)q(¢)p(0o| Ho)d by

JJFYIX, 01, Hi)g(X[6)q(@)p(01| Hi)dpdb

ff(Y|X7 eoaHo)P(90|Ho)d909(X) (1)
ff(Y|X7 (917H1)p((91|H1)d(919(X) ’

BOI

and the Bayes factor does not involve the distribution of X|¢ or the prior
of ¢, since g(X) = [g(X|o)p(¢)de factors out of both the numerator and

denominator.

For multivariate response data where the n responses form an n by d
matrix with rows conditionally independent, we would usually model the
data Y and then the missingness indicator R|Y', with R also n by d. Provided
the data is assumed missing at random (MAR, see Little and Rubin 1987, p.
14) and the distribution of the missingness does not depend on the model,
then the Bayes factor does not depend on the value of R nor on the model
for the missingness. In particular, split the responses Y into (Yobs, Ymis),
the observed and missing portions of the data. The distribution of R can
depend on X, Y,;,, and unknown parameters ¢ independent of 8, under Hj.
Let h(R|Yops, X,¥)r(10) be the density and prior for R and . Then we
have the following result for the missingness indicator which parallels (1) for

covariates.



Result 2

_Jh
Bo1 = I
S/

I

R|Y0b57 X7 ¢)T(¢)
R|Y0b57 X7 ¢)T(¢)
Yv|)(7 007Ho)p(00|H0)d00h(R|Yobs7X) (2)
Yv|)(7 017 Hl)p(01|H1)d01h(R|YObs7 X) '

(Ymis|Yob57 X7 007 HO)f(Yobs|X7 007 HO)p(00|HO)d¢delsd00
(Ymis|Yob57 X7 017 Hl)f(Yobs|X7 017 Hl)p(01|H1)d¢delsd01

f
f

In line 1 of equation (2), the distribution of Y, integrates out of both nu-
merator and denominator and then the marginal h( R|Yops, X) factors out of
the numerator and denominator. If the distribution of R had depended on
Ynis, then the density h(R|Yops, Ymis, X) of R after integrating out ¢ would
depend on Yy, as well as Y, and X. Then we would not be able to inte-
grate in (2) in closed form with respect to Yiis, nor would the cancelation
of h(R|Yobs, X) occur. Thus we would need to integrate with respect to Y
in the numerator and denominator of (2) and the calculation of the Bayes
factor would be even more difficult than it currently is. In the algorithm in

the next section we let R depend only on ¢ and X.

Calculations of Bayes factors often require difficult numerical integrations.
For the repeated measures random effects model Weiss, Wang and Ibrahim
(1997) give a procedure for calculating the Bayes factors between models
with different sets of fixed effects. We use a modification of this procedure
for our sample size specification in section 4; details are given in the appendix.
General numerical procedures for calculating Bayes factors are the subject of
much current research, for example, Chen and Shao (1997a, 1997b), Chen,

Ibrahim and Yiannoutsos (1996), Chib (1995), Gelman and Meng (1994),



Geyer (1994), Meng and Wong (1994), Newton and Raftery (1995), Weiss
(1996).

3 Simulating the predictive distributions of
the Bayes factor

After specifying the necessary distributions, simulating p(bo1|Hy) for a given

sample size involves the following steps. For each of [ € {1,..., Ly} times
1. Sample ¢, the parameters of the X distribution from ¢(¢).
2. Sample the covariates X from g( X |6(")).
3. Sample ¥V, the parameters of the missingness distribution from r(1)).
4. Sample missingness indicator variable R from R|y®, X1,
5. Sample the unknown parameters (9,(;) from the prior p(6|Hy).
6. Sample the data Yk(l) from p(Y| X, (9,&1), Hy).

7. Calculate the Bayes factor béll)k = log[f(Yo(é)s7k|H0,R)/f(YO(];;MHl,R)]

based on the sampled observed data.

For notational simplicity a subscript identifying the sample size n and other
design parameters is omitted above. It may be possible to only sample Y,
rather than the entire Y vector. It may also be possible to reduce the com-

putations by reusing ¢, X 4 and RY for simulations under both H,

9



and H;. Having calculated samples from p(bo1|Hy), we estimate the cutoff
point and power (classical approach), or the sum P(byy > ao|Ho) + P(bo1 <
—ay|Hy), (Bayesian approach); or other summary statistic as desired, de-

pending on the specific utility function used in designing the study.

To identify the needed sample size, we use a simple search, taking n =
20,30,40, ... until the sample size is bracketed. More sophisticated search
routines can be used especially when the Bayes factor calculations are time
consuming. For early calculations, we take L small, such as 100, which gives
a standard error of approximately .05 = (.52/100)"/? for the estimated prob-
ability of interest. We increase Lj after tentatively identifying the needed
sample size. Kernel density estimates of p(bo1|Hy) are checked at each step.
We check if and how the p(bo1|Hy) change with increasing sample size, and
whether substantial probability runs off towards +co with increasing sample
size. We also look for the shape of the distributions, presence of long tails,

skewness, and multiple modes.

4 Sample Size for a Repeated Measures Pe-
diatric Pain Study

Classical sample size calculations for repeated measures analyses usually rely
on possibly non-central F' or y? approximations to the distribution of classical

test statistic under the null and alternative hypotheses (Lui and Cumberland
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1992; Rochon 1991; Muller, LaVange, Ramey and Ramey 1992). Most re-
search has assumed either 2 or sometimes more than two groups with equal
sample sizes. Most calculations are restricted to a fixed X design, and meth-
ods to allow for random covariates are either unavailable or at best restricted
to a few special cases. Similarly, methods that allow for missing data are
unavailable (confer Muller et al 1992, section 3.2). Standard procedure to
adjust for loss of cases seems to be to estimate the sample size assuming no
missing data. Then given a point estimate 0 < w < 1 of the expected frac-
tion of missing data, allowance for missing data typically takes the form of
inflating the desired sample size by (1 —w)™'. No adjustment seems available
for missing observations within a case. For a general discussion of issues in

sample size calculations for repeated measures data, see Muller et al (1992).

4.1 Context of the Design

In this example we consider the design of a followup study based on a prior
repeated measures data set with missing data. Observations are the log of
the time in seconds that a child can keep his or her hand in quite cold water
before being forced to remove it. The time is a proxy for pain tolerance. The
prior study had two covariates, Coping Style (CS) and Treatment (TMT).
If treatment has an effect, then CS and TMT are thought to interact. The
CS is observed and is not under the control of the investigator. The CS is

either attend (A) or distract (D). Attenders pay attention to their arm in
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the cold water or the experimental apparatus, while distractors think about
other things such as a vacation or schoolwork. The TMT was randomized
as either counseling to attend (A), distract (D), or a null treatment (N).
The prior study design had m; = 3 baseline observations followed by the

counseling intervention, and then my = 1 response observations.

The hypotheses of interest are Hy: no treatment effect against Hy: a treat-
ment effect which may be different for attenders and distracters. Analysis by
Weiss, Wang and Ibrahim (1997) of the original study using a predictive prior
and the 58 complete data cases indicated that the data strongly supported
Hy against Hy. This was somewhat surprising, given that other analyses (Fa-
nurik, Zeltzer, Roberts and Blount 1993; Weiss 1994) supported H;. Thus
it is of interest to design a followup study to discover using Bayesian meth-
ods whether the treatment intervention does indeed have an effect on pain
tolerance. Since there is little interest in the null treatment, in the followup

study we eliminate the N treatment.

The four trials of the original study were given on two days, approximately
two weeks apart. No effect due to days has been found. In the followup, it
is planned to have three trials per day instead of two with the intervention
taking place before the fourth or fifth trial. A desire for balance suggests
having the intervention before the fourth trial. Efficiency considerations
might put the intervention before the third trial, but this is probably not

practicable, since the effect of the two week break between trial 3 and 4 on

12



the intervention efficacy is unknown and is unlikely to be ignorable. As long
as the intervention takes place on day two, we are comfortable assuming
that the mean structure is the same across trials before intervention, changes
because of the intervention, and then remains constant again. The most
reasonable design for the followup study will have m; = 3 pre-treatment
trials and my = 3 post-treatment trials; we investigate the effects of taking
m; = 4 and my = 2 and m; = 2 and my = 4 as a form of sensitivity
analysis. We call these designs the 3-3 design, the 4-2 design and the 2-4

design, respectively.

For the new study design, our primary design used the classical approach.
We set the desired power to be .8 and type [ error o« = .05 level for the design.
We also explore the ability to generate Bayes factors greater than 3 and 5
over the range of possible sample sizes. Since Bayes factor calculations are
still somewhat computer intensive, we do not simulate the distributions of the
Bayes factor at all possible values of the sample size. Instead we illustrate
a simple logistic regression methodology to estimate the utility of various

intermediate sample sizes.
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4.2 Sampling Density for Y and Prior Density for Pa-
rameters

The sampling distribution for an n; vector of observations Y, for a single case

indexed by 7 is modeled using the usual random effects model

=
I

Xia+ Zifi + ¢
ﬁi ~ Nq(O,O'QD) (3)

¢ ~ N, (0,0°1).

The design matrix X; for a completely observed case for the original study
under H; is 4 x 8, with a column of ones for the intercept, a column of zeros
or ones for the effect of CS, and a 4 x 6 block of zeros, except for a single
one in the fourth row to indicate which of the 6 TMT*CS groups the child
belonged to. The Z; matrices are n; columns of ones in both the original
and followup studies under both Hy and H;. Missing data within a case will
cause rows of Y; and corresponding rows of X; and Z; to be omitted. Under
Hy, the X; matrix is 4 x 2 with columns for the intercept and CS only; all

columns for the treatment effect are omitted.

The pre-prior for the prior data is a flat prior, po(a, 02, D) o< 1. According
to results in Hobert and Casella (1996), this prior should produce a proper
posterior. Data Y,q from all 64 children in the original study were used with
this pre-prior to produce a prior p(a,a?, D|Yoa, Hy) for & = 0,1 to design

the future study. We made one modification to this prior. The prior for D

14



was taken to be a gamma(cy,c1) where ¢o/c; was set equal to the sample
mean of the Gibbs sample for D from the prior, and ¢y/c? was set equal to
the variance of the Gibbs sample of D. Since these samples were already

available from previous analyses, this required little additional work.

For the followup study, the two columns of X; and the corresponding
elements of « that refer to the N treatment are omitted. The length of Y;
will be 6 in the absence of missing data. The X; matrix will have an initial
column of ones and a second column of ones or zeros depending on the CS
value. Under Hy, the third through sixth columns will be all zeros except
for my ones in the last my rows of whichever column of X, is the indicator

variable of the CS*TMT group that the case belongs to.

Technical details of the prior and Bayes factor calculation are given in
the appendix to keep this methodology self contained. With a few modifica-
tions, the prior follows the methodology in Weiss, Wang and Ibrahim (1997),
hereafter WWI, with a few modifications. The data set that is used to form
our prior is the data set actually analyzed in WWI. In WWI, an optional
parameter may be used to calibrate the strength of the prior information
contributing to the distribution of 3|02, DY 4. When this optional parame-
ter is set equal to one, the prior data is contributes on an equal par with the
data cases to the posterior. We set the optional parameter equal to one here.
In WWI, the prior for ¢ does not depend on D while our prior for o2 is

directly a predictive prior for o2 derived from the prior data and dependent
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on D. Finally, our prior for D is based directly on the prior data as already
described.

4.3 Covariate and Missing Data Distributions

There are two covariates in the study to be designed; CS which is binary
and TMT which is binary. Of 64 children in the original study, 32 were
observed to be distractors, and 32 were attenders. Starting with a uniform
prior Beta(1,1) for m¢s, the probability that a new child is a distractor,
we will sample 7¢s as a Beta(33,33), and then for the n individuals in the
followup study we sample CS; as Bernoulli(mcg). If the followup study were
to be the same as the original, then the distribution of TMT is known to be
multinomial(1/3,1/3,1/3). Since we are eliminating the N treatment group,
TMT is Bernoulli(1/2). We use a Beta(1,1) prior for all probabilities in
this section. If additional information from outside the prior study data was

available, the Beta prior could be altered from a Beta(1, 1) density.

We give three models for the missingness. The one we actually use is the
third. In the original study the design called for 4 repeated measures per
child for a total of 64 * 4 = 256 observations on n = 64 cases. However, 11
observations were missing on 6 children. To all appearances, missingness was
completely at random, related to things like school absence or illness and not
to an inability to follow instructions or fear or feelings about the experiment

or it’s results. A simple missingness model is one possibility, where s obs
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the probability that an observation is missing has prior probability density
Beta(114+1,256—11+1), and every observation might be deleted at random

with probability miss,obs-

A problem with this simple model is that missing observations tended to
cluster; 11 observations on only 6 children is unlikely to occur by chance if
observations were randomly missing. A second model for missingness models
the probability of missingness Mg case fOr a particular case as Bernoulli(58 4
1,6 + 1), again using a flat Beta(1,1) prior. Given that a case has miss-
ing data, one observation could be deleted at random from the case, and
remaining observations within the case could be deleted independently with
probability myitnim distributed a priori as Beta(5 + 1,13 + 1). This approach
seems awkward and does not extend naturally to changing the number of

observations within a case.

The method we actually used was to consider that children divide into
two groups, missers and non-missers. Non-missers never have missing data,
while each observation on a misser is missing with probability mwithin. The
probability that a child is a misser is Tigser- 1The probability that a misser
has no missing data is (1 — Twithin)"™, Where n; is the designed number of
observations for the child. For the prior study, n; = 4, and for the study
under design, n; = 6. The prior data of 58 complete data cases, and 6
missers with a total of 11 missing observations does not easily allow us to

produce needed posterior samples for myithin and Tmjsser- However, including
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one extra unknown, ly, the number of missers with zero missing observations
allows us to produce a simple Gibbs sampler (Gelfand, Hills, Racine-Poon
and Smith 1990) to draw samples from the posterior of Twithin and Tmisser-

Starting from flat Beta(1, 1) priors, the needed conditional distributions are

T within| Tmissers Lo, prior data ~ Beta(11 +1,4lp + 15+ 1)

T misser | Twithin, Lo, prior data ~ Beta(58 — o + 1,6 + lo)

TE
. . . th
lo|Tmisser; Twithin, prior data ~ Binomial | 58, 1 ULUILE
T within + Tmisser

The resulting mean and standard deviation of myjser are 188 and .086 and

for Twithin they are .226 and .085.

4.4 Results

We simulated distributions p(be1|Hy) for the 3-3, 2-4 and 4-2 designs. Gener-
ally we increased n in steps of 10 starting from n = 20, searching for the point
where the power was equal to .8. For the 3-3 design, we also investigated
more carefully the power for sample sizes n € (37,38,39). The complete
set of simulation results are reported in table 1. The first column gives the
proposed sample size n, the second column is the simulation sample size, usu-
ally 100, except for n = 38and39 for the 3-3 design. Column 3 gives ) o5(n),
the lower 5% tail of the distribution p(bo1|Ho) and column 4 is the power
P(bor > vos(n)|Hy) which is the probability under Hy that byy is greater

than the cutoff in column 3. Columns 5-7 give the probabilities that the log
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Bayes factor is greater than 5, 3, and 0 if Hy is true, and columns 8-10 give

the probabilities that bg; is less than —5, —3, and 0 given that H; is true.

For the 3-3 design, the power achieves a level of .80 for a sample of
size n = 39. We might expect the cutoff points ¥ gs5(n) to be monotone
in n, however, they are not. This is because of sampling variability in the
calculations. The standard error of estimation of 1 g5(n) from a sample of
size 100 is approximately .9, and for a sample of size 1000, the standard error
is approximately .3, so none of the inversions or equalities are too surprising.
For the 2-4 design we appear to need less than 40 observations while for the
4-2 design we will need somewhat over 50 observations. The 4-2 design does
appear to have less power than the other two, while the 3-3 and 2-4 are close

in power.

Inspection of table 1 suggests that if we wanted to make P(byy > 3|Ho) +
P(bpy < —3|Hy) > 1, then the necessary sample size appears to be barely
over 20 for the 3-3 and 2-4 designs, but will be close to 30 for the 4-2 design.
If we try for P(bo1 > 5|Ho) + P(boy < —5|Hy) > 1, then we need an n of
slightly over 50 for the 3-3 design, slightly under 50 for the 2-4 design, and
approximately 60 for the 4-2 design. We will get more accurate conclusions

shortly.

Since the simulation sample sizes in table 1 are not as large as we might

desire, and simulations could not be run at all sample sizes, it is helpful to
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borrow strength from different simulations to estimate the design character-
istics for different sample sizes. We did this by fitting a logistic regression
model to each of the 7 columns in each of the 3 sections of the table, for a total
of 21 logistic regressions. As an example, for the 3-3 design, and for the prob-
ability P(bo; > 3|Hp), which is the 6" column of the top portion of the table,
there are 7 data points, with predictor values n = (20,30, 37, 38,39, 40, 50),
response y equal to the proportion of times that bg; > 3 — this is y = 67
for n = 20 and y = 71 for n = 30, for example. Then y ~ binomial(L, )
with L equal to the number of simulations, usually 100, but for n = 38, 39,
L = 1200 and 800; and log(7/(1 — 7)) = o + Bin. Since the probabilities
within a column do not vary greatly, a linear logistic regression can be ex-
pected to do a good job of interpolating and smoothing the results of the
study. Table 2 has the same format as columns 1 and 4-10 of table 1 but the

tabled probabilities are fitted results from these logistic regressions.

Fitting these logistic regressions and using the resulting estimated values
to re-estimate the probabilities in table 1 substantially increases the effective
sample size of most results. For example, for the 3-3 design and a sample
size of 40, using the fitted results to estimate P(byy < —3|H;) gives an
estimate of .80 with a standard error of .02 and an effective sample size of
325 rather than the simulation sample size of 100 and simulation standard
error of approximately .04 and a simulation estimate of .88 which happened

to be the same as the simulation result for n = 50. Furthermore, we can
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estimate this probability for n = 41, giving an estimated probability of .806
and a similar effective sample size in spite of not having run simulations for

n = 41.

Interpolation of table 2 suggests that we need 39 cases for the 3-3 design
to have power of .8, 34 cases for the 2-4 design and fully 53 cases for the
4-2 design. The smoothing makes these results more dependable than the
sample size estimates based on table 1. The sample sizes needed to produce
P(bor > 3|Ho) + P(boy < —3|Hy) > 1 are 21, 23, and 32 for the 3-3, 2-4, and
4-2 designs. And sample sizes to give P(byy > 5|Ho) + P(bor < —5|Hy) > 1
are 50, 48, and 60.

The calculations P(byy > 0|Hy) and P(byy < —0|H;) are of interest in
sample size specification since minimally we would like a study design that
has the Bayes factor of the correct sign, either positive or negative given that
Hy or Hy istrue. Under Hy, we see that there is always substantial probability
of at least .89 that by is greater than 0 for all sample sizes. Under Hy, the
probabilities are lower of having the correct sign, ranging from .61 to .80.
The reason that the power is higher than P(by; < 0|H;) is that the cutoff
is positive at the higher values of n so that P(byy < ©.05(n)|H1) > P(bn <

0|H).

Generally we expected the 2-4 design to be the most efficient, since extra

observations are taken after treatment when there are four groups and fewer
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observations are taken before treatment when there are only two groups.
Similarly, we expect the 3-3 design to be more efficient than the 4-2 design
however this was not strongly shown in investigations of table 2. Generally
the results follow the expectation, although occasionally at the lowest sample
sizes, n = 20, and sometimes n = 30, the 4-2 design can beat the 3-3 design

and even the 2-4 design.

Interestingly, the slopes of the logistic regressions that produced table
2 are identical to within sampling error and with a few exceptions such as
for the 3-3 design and P(byy < 0|H;) where the probabilities are all quite
high. For example, the slopes for the 3-3 design center around .035 except
for power which has a slope of .094, and P(bg; < 0|H;) which has a slope of
.017. This suggests that further combining of the simulation results might

be possible to increase accuracy; however this lead was not followed here.

Approximately sixty children in the 8-10 age range are available for the
followup study. As with most study design, sample size selection is driven
not only by power but by cost, subject availability and other considerations.
The analysis here shows that even for the least efficient 4-2 design and n =
60 subjects, we have (a) sufficient power and (b) reasonable probability of

determining which hypothesis is correct using a Bayes factor approach.
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5 Discussion

The priors used for calculating by could be different from the data generation
priors p(8| H;) but this requires explicit justification. A reason for considering
multiple priors would be sensitivity analysis; an important class of sensitivity
analyses would be to assess how other informed interests such as colleagues
and funding agencies assess any proposed sample size. However, these anal-
yses would seem to require that the data generation and prior distribution
densities be the same. Some experience (see WWI for one example) with
repeated measures random effects priors suggest that an informative prior is
helpful for producing a large Bayes factor. Obviously an informative prior
requires justification; taking an informative prior merely to produce a large
Bayes factor is not appropriate. Prior data, as in our example, seems the

best way of producing such an informative prior.
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A Prior Density and Bayes Factor Calcula-
tion

Here we give the exact form of the prior density and technical details about
the Bayes factor calculation.

Let 2 ~ IG(a,b) represent an inverse gamma distributed random variable

b b
— exp|——1:
21T (a) b x)’

with I'(a) being the usual Gamma function; let © ~ N(a,b) be a normally

with density

distributed random variable with mean a and variance b; and let « ~ G(a,b)

denote a gamma distributed random variable with density proportional to

a.a—1
b*x

I'(a)

exp(—ba);

The model for the prior data and for the study to be designed is given
by (3). For a generic data set modeled using (3), define Y = (Y, ... V1),
X =(X{,...., X"}, and Z = diag(Z1, ..., 7Z,). Let N =" n; be the total
number of observations taken on all n people in the study and let p be the

number of columns of the X matrix, which is p,q = 8 under H; in the old

study and ppew = 6 in the new, since we lose two columns in the new study
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by design and pelq = pnew = 2 under Hy. References to either the old or the
new data will be subscripted by the words old or new as Y,14, Xoid, Zolds Pold
or Nejq for example. To reduce clutter, a subscript £ = 0 or 1 for the model
will not be used and dependence of densities on Hj, will be avoided except for

f(Yaew|Yola, Hr). The calculations described here lead to f(Yaew|Yola, Hx) and

so need to be performed once under each Hy to calculate the Bayes factor.
Formally, the prior p(a, 0%, D|Yoia) = p(alo?, D, Yoa)p(a?|D, Yo )p(D|Yoia)
is

oz|02, D, Yyq ~ N(ozo,azA)
Neld — pota + 2 RSSold(D))
2 ’ 2

oD, Yaa ~ IG(
D|Yoa ~ gamma(co,ci),

where ¢y and ¢; are constants derived earlier as explained in subsection 4.2,

and

Qo = (Xgldvol_leold)_ngldV_lYold
Voa = 1+ Zaa(l @ D)Z!
A = (X0aVod Xoa) ™!
RSS(D) = Y'Qz(I - Px)Y
Qs = I—Z2(Z'7 +10 D)7

Py = X(X'QzX)'X'Qy.

We need to calculate the prior predictive sampling density f(Yiew|Yold, Hi)
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for the numerator, k = 0 and denominator k = 1 of the Bayes factor By,
f(i/HeWD/Olda Hk) = /f(}/new|a7 027 D)p(a, 027 DD/Old)da do-z dD.
The inner two integrals can done in closed form giving

FViow[Yoras Hy) = / F(Voows D|Yaa) d D

where

f(i/newa DD/old) —
(.BRSSeua( D)) Wota=paia+2) |y, 112|Q 7 V2T(.5( Nyew + Notd — Pold + 2))p(D|Youa)

(27T)Nnevv/2|A|1/2(‘5]\/[(ynew7 D)).5(Nnew+Nold—pold+2)F(_5(Nold — Pold + 2)) ’

where

Via XX 4+ A7t

M(i/neW7 D) = (1/116W - Xa*)tQZnew(ifneW - XOK*)
+(a" — ozo)tA_lvthQZnewX(oz* — ag) + RSSaa(D)

Of* = (leleWQZnewX)_lXtQZnewifneW

This last integral with respect to D we do numerically using Simpson’s or

other one dimensional integration rule.
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20
30
37
38
39
40
50

20
30
40
50

20
30
40
50
60

Table 1: Top, middle, and bottom are for the 3-3, 2-4 and 4-2 designs re-
spectively. Column 1: proposed sample size. Column 2: Simulation sample
size L. Column 3: ¢ g5(n) is the fifth percentile of the distribution of the
log Bayes factor by; under Hy. Column 4: Power is P(bg; < ¢ 5(n)|H;) the
probability under H; that bg; is less than the cutoff in column 3. Columns
5-7: Probability that bg; is greater than 5, 3 or 0 under Hy. Columns 8-10:

100
100
100
1200
800
100
100

100
100
100
100

L

100
100
100
100
100

@/},05(71)

-2.00
-1.00
0.40
0.75
0.50
1.13
1.50

@/},05(71)

-0.05
0.70
0.70
2.80

@/},05(71)

0.10
-0.50
0.50
0.40
1.30

power

0.38
0.60
0.76
0.79
0.80
0.84
0.86

power

0.63
0.72
0.81
0.93

power

0.68
0.62
0.77
0.79
0.83

3-3 design

P(bol > CL|H0)
a=) a=3 a=0

0.32
0.31
0.49
0.43
0.43
0.47
0.56

0.67
0.71
0.81
0.78
0.79
0.88
0.88

0.89
0.91
0.97
0.97
0.97
0.99
0.97

2-4 design

P(bol > CL|H0)
a=) a=3 a=0

0.23
0.31
0.39
0.63

0.67
0.75
0.80
0.92

0.94
0.96
0.97
1.00

4-2 design

P(bol > CL|H0)
a=) a=3 a=0

0.24
0.27
0.34
0.38
0.57

0.56
0.68
0.67
0.77
0.81

0.95
0.93
0.97
0.97
0.98

P(bol < —G|H1)
a=d a=3 a=0

0.20
0.30
0.30
0.39
0.37
0.36
0.39

0.31
0.40
0.41
0.53
0.52
0.47
0.53

0.61
0.63
0.71
0.74
0.75
0.75
0.76

P(bol < —G|H1)
a=d a=3 a=0

0.19
0.29
0.33
0.48

0.28
0.45
0.45
0.60

0.64
0.67
0.72
0.83

P(bol < —G|H1)
a=d a=3 a=0

0.10
0.25
0.27
0.44
0.42

0.25
0.35
0.47
0.53
0.52

0.65
0.65
0.74
0.76
0.72

Probability that bg; is less than -5, —33(())1’ 0 under H;.



3-3 design
P(bol > CL|H0) P(b(n < —CL|H1)

n power |a=5 a=3 a=0|a=5 a=3 a=0

20 .40 29 64 89 | 25 35 .61
30 .63 360 .73 94 | 31 44 .68
37 .07 4278 97 | 36 .50 .73
38 .78 A3 079 97 | 37 51 .74
39 .80 A4 79 97 | 38 52 74
40 .81 45 80 97 | 38 .53 .75
50 .92 H4 .86 99 | 46 .61 .80

2-4 design
P(bol > CL|H0) P(b(n < —CL|H1)

n power |a=5 a=3 a=0|a=5 a=3 a=0

20 .61 21 65 93 | .19 30 .61
30 .74 32 .76 .96 | .27 .39 .67
40 .84 45 .84 98 | 36 49 .72
50 .90 H9 89 .99 | 4T 59 TT

4-2 design
P(bol > CL|H0) P(b(n < —CL|H1)

n power |a=5 a=3 a=0|a=5 a=3 a=0

20 .64 21 57 94 | 14 28 .65
30 .69 28 .64 95 | 200 35 .68
40 .74 35 .70 96 | .28 42 71
50 .79 43 .76 97 | 37 .50 .73
60 .83 bH2 81 98 | 48 57 .75

Table 2: Fitted values. Table is smoothed estimates of the probabilities from
table 1. Column 1: Proposed sample size. Column 2: Power is P(by <
Yos(n)|Hy). Columns 3-5: Probability that by is greater than 5, 3 or 0
under Hy. Columns 6-8: Probability that by is less than -5, -3 or 0 under
H;.
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