Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP

Abstract

Activation of N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) in postsynaptic dendrites is required for long-term potentiation (LTP) of many excitatory synapses, but the role of presynaptic axonal NMDARs in synaptic plasticity remains to be clarified. Here we report that axonal NMDARs play an essential role in LTP induction at mouse corticostriatal synapses by triggering activity-induced presynaptic secretion of brain-derived neurotrophic factor (BDNF). Genetic depletion of either BDNF or the NMDAR subunit GluN1 specifically in cortical axons abolished corticostriatal LTP in response to theta burst stimulation (TBS). Furthermore, functional axonal NMDARs were required for TBS-triggered prolonged axonal Ca(2+) elevation and BDNF secretion, supporting the notion that activation of axonal NMDARs induces BDNF secretion via enhancing Ca(2+) signals in the presynaptic nerve terminals. These results demonstrate that presynaptic NMDARs are equally important as postsynaptic NMDARs in LTP induction of corticostriatal synapses due to their role in mediating activity-induced presynaptic BDNF secretion.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View