Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

The APC/C Subunit Mnd2/Apc15 Promotes Cdc20 Autoubiquitination and Spindle Assembly Checkpoint Inactivation

Abstract

The fidelity of chromosome segregation depends on the spindle assembly checkpoint (SAC). In the presence of unattached kinetochores, anaphase is delayed when three SAC components (Mad2, Mad3/BubR1, and Bub3) inhibit Cdc20, the activating subunit of the anaphase-promoting complex (APC/C). We analyzed the role of Cdc20 autoubiquitination in the SAC of budding yeast. Reconstitution with purified components revealed that a Mad3-Bub3 complex synergizes with Mad2 to lock Cdc20 on the APC/C and stimulate Cdc20 autoubiquitination, while inhibiting ubiquitination of substrates. SAC-dependent Cdc20 autoubiquitination required the Mnd2/Apc15 subunit of the APC/C. General inhibition of Cdc20 ubiquitination in vivo resulted in high Cdc20 levels and a failure to establish a SAC arrest, suggesting that SAC establishment depends on low Cdc20 levels. Specific inhibition of SAC-dependent ubiquitination, by deletion of Mnd2, allowed establishment of a SAC arrest but delayed release from the arrest, suggesting that Cdc20 ubiquitination is also required for SAC inactivation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View