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Abstract: We characterize the modes with complex wavenumber for both 

longitudinal and transverse polarization states (with respect to the mode 

traveling direction) in three dimensional (3D) periodic arrays of plasmonic 

nanospheres, including metal losses. The Ewald representation of the 

required dyadic periodic Green’s function to represent the field in 3D 

periodic arrays is derived from the scalar case, which can be analytically 

continued into the complex wavenumber space. We observe the presence of 

one longitudinal mode and two transverse modes, one forward and one 

backward. Despite the presence of two modes for transverse polarization, 

we notice that the forward one is “dominant” (i.e., it contributes most to the 

field in the array). Therefore, in case of transverse polarization, we describe 

the composite material in terms of a homogenized effective refractive 

index, comparing results from (i) modal analysis, (ii) Maxwell Garnett 

theory, (iii) Nicolson-Ross-Weir retrieval method from scattering 

parameters for finite thickness structures (considering different thicknesses, 

showing consistency of results), and (iv) the fitting of the fields obtained 

through HFSS simulations. The agreement among the different methods 

justifies the performed homogenization procedure in case of transverse 

polarization. 

©2011 Optical Society of America 

OCIS codes: (250.5403) Plasmonics; (160.3918) Metamaterials; (160.1245) Artificially 

engineered materials; (260.2065) Effective medium theory. 
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1. Introduction 

Plasmonic resonances can occur in metallic structures with subwavelength dimensions. This 

property enables the design of aggregates and arrays of nanoparticles, periodic in one (1D), 

two (2D) or three dimensions (3D), that possess collective resonances, with subwavelength 

distance between the constitutive nanoparticles. These resonances can ultimately be used to 

guide backward modes, create artificial dielectrics, narrow band absorption, artificial 

magnetism, quasi-dark modes. Therefore, a thorough understanding of the modes that can be 

excited in a periodic array of nanoparticles is essential to relate them to physical employment 

for innovative applications. We are interested in the case of periodic arrays of plasmonic 

nanospheres. Modal analysis in 1D and 2D periodic arrays of plasmonic nanospheres have 

been studied in detail in [1–8] and references therein, also providing the criteria of physical 

existence of the excitable modes in such periodic structures [6,7]. However, we have not 

found in literature a complete and exhaustive characterization description of the modes in 3D 

periodic arrays of plasmonic nanospheres. Therefore, the interest of this paper concerns 

modal analysis in such a 3D periodic array, and in particular how waves propagate inside the 

metamaterial. Importantly, 3D periodic arrays of nanospheres can be engineered to obtain 

peculiar characteristics, such as, among others, slow wave structures, and double negative 

materials. Mode analysis of 3D periodic arrays of metallic nanospheres have been performed 

in [5,9]. In [9], the authors adopted the single dipole approximation (SDA) [10,11] with the 

quasistatic nanosphere polarizability, according to the Clausius Mossotti approach, to design 

broadband effective negative index metamaterials by using the nano-transmission line 

network concept, and focusing mostly on the transverse polarization (with respect to the 

direction of propagation of the modes) which is the only one that allows for backward 

propagation. They considered densely packed and properly designed 3D periodic arrays 

because they are capable of supporting a nano-transmission line propagating mode and thus 

acting as an effective negative index metamaterial. However, a complete physical modal 

description was out of the scope of that paper and little attention has been given to the 

longitudinal polarization (since it does not allow for backward propagation). In [5], the 

authors analyzed the modes with complex wavenumber in 3D periodic arrays of silver 

nanospheres, accounting also for metal losses. Moreover, the authors clearly stated the 

difficulty of finding all possible modal solutions, which may result in missing some branches 

of the dispersion diagram. They reported the dominant mode for transverse polarization (see 

Sec. 3 where we report also a backward mode, and Sec. 6 where we show that this is not 

dominant), and indeed, their objective was primarily to display a representative selection of 

k−β diagrams of modal solutions (where k is the host medium wavenumber, and β is the 

wavenumber of the guided wave) without focusing on the physical/nonphysical properties of 

the found modes. 

The approach described in the present paper allows for the tracking and especially for the 

characterization of the evolution of modes, varying frequency. We analyze optical modes 

with complex wavenumber in 3D periodic arrays of plasmonic nanospheres for both 

longitudinal and transverse (with respect to the mode traveling direction) polarization states. 

Each nanosphere is modeled to act as a single electric dipole, by using the SDA [10,11] and 

the metal permittivity is described by the Drude model. The numerical procedure developed 

in this paper for evaluating the complex zeros of the dispersion relation uses the Ewald 

representation for the dyadic periodic Green’s function (GF) to represent the field in 3D 

periodic arrays, and is based on previous scalar developments [12–14]. The Ewald 

representation, besides providing analytic continuation to the complex wavenumber space, 

results in two series with Gaussian convergence where only a handful of terms are needed 

[12–14]. 

As it will be shown in Sec. 6 dealing with a metamaterial with finite thickness, despite the 

presence of two modes for transverse polarization, only one is “dominant”, in the sense that it 
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contributes mostly to the field in the array. Therefore, in case of transverse polarization, we 

describe the composite material in terms of homogenized effective refractive index. This is 

obtained by the modal analysis for transverse polarization for a cubic lattice metamaterial, is 

compared (i) to the one obtained from Maxwell Garnett (MG) homogenization theory, (ii) to 

that retrieved by scattering parameters of finite thickness structures by using the Nicolson-

Ross-Weir (NRW) method, and (iii) to that retrieved directly by fitting the fields obtained 

through HFSS simulations. The agreement among the different methods confirms the validity 

of the homogeneous treatment of the composite material. We also perform parametric 

analyses and present a structure that is able to boost the figure of merit (defined as the ratio 

between the real and the imaginary part of the modal complex wavenumber). 

The structure of the paper is as follows. In Sec. 2, a brief description of the simulation 

model to perform modal analysis in 3D periodic arrays of plasmonic nanospheres is reported. 

The detailed computation of the dispersion diagrams for longitudinal and transverse 

polarization states (with respect to the mode traveling direction) for a set of array parameters 

is then reported in Sec. 3, and a comparison of the performance of three different structures 

(parametric analysis) is in Sec. 4. We then report a comparison of reflection, transmission and 

absorption due to a normal incident plane wave excitation obtained using SDA with those 

obtained by a full-wave HFSS simulation pertaining to ten layers of arrayed plasmonic 

nanospheres, stacked in the direction of propagation, in Sec. 5. Finally, in Sec. 6, 

homogenization theory is adopted to compute the effective refractive index and the results 

from modal analysis are compared to the ones obtained from Maxwell Garnett theory, as well 

as to those retrieved from HFSS simulation either by using NRW method or directly by the 

fields obtained through HFSS simulations. In addition, the evaluation of the Ewald 

representation for the dyadic GF for 3D periodic arrays is derived for the first time, to the 

authors’ knowledge, in the Appendix A. 

2. Simulation model 

The structure under analysis is the 3D periodic array of metallic nanospheres reported in Fig. 

1. The monochromatic time harmonic convention, ( )exp i tω− , is assumed here and 

throughout the paper, and is therefore suppressed hereafter. 

We model each nanosphere as a single electric dipole. As such, for a metallic spherical 

particle the induced dipole moment is 

 loc
ee ,α=p E  (1) 

where eeα  is the isotropic electric polarizability of the nanosphere, locE  is the local field 

produced by all the nanospheres of the array except the considered nanosphere, plus the 

external incident field to the array, if present. Bold fonts refer to vector quantities. The SDA 

is a good approximation when the metallic nanospheres are used close to their fundamental 

plasmonic frequency, when particle dimensions are much smaller than the wavelength, and 

when the edge-to-edge spacing d between spheres is larger than the spheres’ radius r (i.e., 

d r≥ ). However, even for smaller distances the SDA may provide satisfactory approximated 

results [15]. In general, for a spacing between the spheres smaller than their radius (i.e., 

0 d r< < ), more accurate results would involve multipole field contributions [10,16–18]. 

According to Mie theory, the electric polarizability for a nanosphere is [10,11] 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 10 0
ee 13 3

1 1 1 1

6 6
,

r r rh h

r r r

m m kr kr kr m kri i
a

m m kr kr kr m krk k

ψ ψ ψ ψπ ε ε π ε ε
α

ψ ξ ξ ψ

′ ′−
= =

′ ′−
 (2) 

where hε  is the relative permittivity of the host medium, 0ε  is the absolute permittivity of 

free space, 0 0/h hk c kω ε ε= =  is the host medium wavenumber, with 0k  denoting the 
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free space wavenumber, 0c  the speed of light in free space and 1a  the electric-dipole Mie 

scattering coefficient as in [10]. Moreover, ( ) ( )1 1 sin / cosjψ ρ ρ ρ ρ ρ ρ= = −  and 

( ) ( ) ( ) ( )1
1 1 / 1

i
h i e

ρξ ρ ρ ρ ρ= = − −  are the Riccati-Bessel functions [19], and /r m hm ε ε=  

is the metallic nanosphere relative refractive index, with mε  denoting the relative permittivity 

of the metallic nanospheres, which is described by the Drude model 

( )2
/m p iε ε ω ω ω γ∞= − +   , where ε∞  is a high-frequency fitting parameter, pω  is the 

plasma frequency of the metal (expressed in rad/s) and γ  is the damping factor (expressed in 

1/s). In general, this model provides a reasonably accurate description of the dielectric 

properties of the metal across the infrared and optical frequency ranges. In the UV regime, the 

effect of interband transitions should be taken into account in the metal permittivity response, 

employing for example the Lorentz-Drude model as in [20]. However in this frequency region 

this more accurate model would not change the wave physics described in this paper. In the 

case the array is in a dense host material, it would resonate in the visible region and the Drude 

model would provide a good approximation. 

Consider now a 3D periodic array of nanospheres as in Fig. 1, immersed in a 

homogeneous background, with relative permittivity hε , for which each spherical 

nanoparticle is placed at positions 0n n= +r r d , where ( )1 2 3, ,n n n n=  is a triple index, and 

1 2 3ˆ ˆ ˆn n a n b n c= + +d x y z  (where a caret on top of a bold letter refers to unit vector quantities), 

with 1 2 3, , 0, 1, 2,...n n n = ± ± , 0 0 0 0ˆ ˆ ˆx y z= + +r x y z , and a, b and c are the periodicities along 

x-, y- and z-direction, respectively [11,21]. 

 

Fig. 1. 3D periodic array of metallic nanospheres embedded in a homogeneous medium with 

permittivity hε . The radius of each nanosphere is r; and a, b and c are the periodicities along x-

, y- and z-direction, respectively. 

Suppose that the array is either excited or a mode (a periodic field) is present, with 

wavevector B ˆ ˆ ˆx y zk k k= + +k x y z . Consequently, each nanosphere will have an electric 

dipole moment equal to B
0

ni
n e

⋅= k d
p p  (the polarization direction is fixed for symmetry 

reasons). Then, the local electric field acting on a nanosphere at position 0r  is given by 

 ( ) ( ) ( )loc inc
0 0 B 0 0 0 B 0, , , ,∞= + ⋅E r k E r G r r k p

�

 (3) 

where ( )0 0 B 0, ,∞ ⋅G r r k p
�

 is the electric field produced by all the other nanospheres but the 

one at position 0r , and ( )0 0 B, ,∞G r r k
�

 represents the regularized periodic dyadic GF. This is 

defined as ( ) ( ) ( )0 B 0 B 0, , , , ,∞ ∞= −G r r k G r r k G r r
�

, which is not singular at 0=r r , and 

#154629 - $15.00 USD Received 13 Sep 2011; revised 16 Nov 2011; accepted 16 Nov 2011; published 7 Dec 2011
(C) 2011 OSA 19 December 2011 / Vol. 19,  No. 27 / OPTICS EXPRESS  26031



 ( ) ( ) B
0 B, , , ni

n

n

e
⋅∞ =∑ k d

G r r k G r r  (4) 

is the electric-field dyadic GF for the phased periodic array of nanospheres, and a bar under a 

bold letter refers to dyadic quantities. Here ( ), ′G r r  denotes the dyadic GF for a single dipole 

in the homogeneous background and is given by 

 ( )
2 2

2 3 2 3
0

1 3 3 ˆ ˆ, ,
4

ikR

h

e k ik k ik

R RR R R Rπε ε

    
′ = + − − + −            

G r r I RR  (5) 

where ˆR ′= = −R R r r  is the vector from the source at ′r  to the observer at r , and I  is the 

identity dyad, and R ′= −r r . Substituting then the expression for the local field given in Eq. 

(3) into Eq. (1), one obtains ( ) ( )inc
0 ee 0 ee 0 0 B 0, ,α α ∞= + ⋅p E r G r r k p

�

, which leads to the 

linear system 

 ( ) ( ) ( ) ( )inc
B 0 ee 0 B ee 0 0 B, , , .α α ∞⋅ = = −A k p E r A k I G r r k

�

   (6) 

Mode analysis in the 3D periodic array is performed by computing the complex zeroes of 

the homogeneous version of Eq. (6); i.e., when no impressed excitation is present, or 

( )inc
0 .=E r 0  This requires the solving of ( )Bdet 0=A k  for complex Bk . For a given 

angular frequency ω , imposing the determinant of Eq. (6) to vanish, implicitly defines a 

dispersion relation among the three complex components of Bk . Once two independent 

components of Bk , say xk  and yk , are given, the third, say zk , is imposed by the dispersion 

relation. For general isotropic media the dispersion relation is invariant with respect to an 

arbitrary rotation, and the same mode can propagate in any direction; therefore the modal 

analysis can be carried out in a specific direction which will be representative of all. 

However, in the general anisotropic case, the analysis must be carried out for any direction. 

Also, because of crystal symmetry and electromagnetic reciprocity, a mode which travels in a 

given direction can also travel in the opposite direction. The mathematical counterparts of this 

physical property resides in the even dependence ( ) ( )B B= −A k A k , for which if Bk  is a 

solution of ( )Bdet 0=A k , also B−k  is. Therefore, modes are always found in couples 

travelling in opposite directions; however they can be easily distinguished by assuming a 

physical decay along the energy propagation direction. In absence of losses, instead, a four-

quadrant symmetry holds, thus the correspondent complex conjugate solutions, *
B±k , would 

be solutions as well. 

3. Dispersion diagrams for 3D periodic arrays of plasmonic nanospheres 

In this section, we analyze modes with complex wavenumber traveling along the z-direction, 

i.e., B ˆzk=k z , with z z zk iβ α= + , in 3D periodic arrays of silver nanospheres embedded in 

free space (i.e., 0k k= ), with dipole moments polarized longitudinally (L-pol) or 

transversally (T-pol) to the traveling direction z. Namely, we impose 0x yk k= =  for any 

given frequency and we solve ( )Bdet 0=A k  for complex zk . Between the two possible 

opposite solutions, the mode with power flow toward the positive z-direction is selected by 

choosing 0zα ≥ . The radius of the spherical nanoparticles is 25 nmr =  . The adopted Drude 

model parameters for silver permittivity are 5ε∞ = , 
16

1.37 10 rad/spω = ×   and 
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12 127.3 10 sγ −= ×   [22,23], to fit measured data in the analyzed frequency range [24]. Based 

on this data, an isolated particle would exhibit a strong dipole moment around 800 THz 

( / 0.4ka π =  assuming 75 nma =  ). Modes are also characterized in terms of their 

polarization state by calculating the eigenvector p  associated to a wavenumber zk . It has to 

be noticed that when considering propagation along a principal direction of the crystal, say z, 

the matrix ( )BA k  in Eq. (6) will present a block structure with 0xz zx yz zyA A A A= = = =  

because of symmetry which decouples the longitudinal and the transverse polarizations. 

Therefore, in the L-pol case, each nanosphere has an induced dipole moment along the z-

direction (i.e., ˆzp=p z ). In addition, when the transverse periodicities a and b along x and y 

are equal, yet because of symmetry, one has xx yyA A=  and xy yxA A= ; therefore, in the T-pol 

case, each nanosphere has an induced dipole moment orthogonal to z, i.e., ˆ ˆx yp p= +p x y . 

Modal analysis is then performed for the three 3D periodic arrays reported in Table 1 

(although we report the dispersion diagrams only for Structure I), and results are compared in 

Sec. 4. 

Table 1. 3D Periodic Array Parameters 

Structure r [nm] a [nm] b [nm] c [nm] 

I 25 75 75 75 

II 25 75 75 150 

III 25 150 150 75 

3.1 Transverse polarization (T-pol) 

The dispersion diagrams for the Structure I outlined in Table 1 are shown in Fig. 2 for both 

the real and the imaginary parts of the wavenumber z z zk iβ α= +  with respect to the host 

wavenumber k  in the case of T-pol. Only modes with 0zα ≥ , i.e., those with power flow 

toward the positive z-direction, are shown. 

 

Fig. 2. Dispersion diagram for T-pol. (a) Real part and (b) imaginary part of the wavenumber 

z z zk iβ α= + , only for modes whose power flow is toward the positive z-direction, i.e., 

0zα ≥ . The black dotted curves show the behavior of each mode in the lossless case, i.e., 

when setting 0γ =  in the silver constitutive relation. 

Mode 1 (blue line) follows a typical dispersion curve which is almost straight at low 

frequencies corresponding to an effective medium slightly denser than the host medium 

(whose ideal dispersion, the light line, z kβ =  is plotted in black dash-dotted line) with small 

attenuation; then, increasing the frequency, the dispersion curve bends exhibiting large phase 
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constant (close to the edge of the Brillouin zone 1 / 1zcβ π− < < ), thus this mode could be 

employed, for example, in field concentration and imaging applications. Further increasing 

frequency, Mode 1 experiences a bandgap with a strong attenuation; finally, at higher 

frequencies Mode 1 reenters a propagation band with small attenuation. Mode 2 (green line) 

at low frequencies is characterized by a large phase constant at the edge of the Brillouin zone 

and large attenuation constant. Increasing frequency, the attenuation constant decreases 

(remaining yet larger than that of Mode 1 in the bandgap) in a small frequency region, with 

phase constant approaching very small values. At higher frequencies, Mode 2 is characterized 

by very small phase constant and large attenuation constant. Other modes with normalized 

attenuation constant larger than / 2zcα π =  are present but not reported here since they 

dramatically decay as z kα >> . The dispersion diagram assuming ideal lossless nanospheres 

is reported in Fig. 2 as black dotted lines, and it refers to a crystal comprising spheres made of 

hypothetical lossless silver with Drude parameter 0γ → . It is interesting to note how small 

losses keep dispersion diagram branches separated for all frequencies, while they overlap in 

the lossless case in some frequency range (see Fig. 3), thus rendering the mode frequency 

evolution ambiguous in some cases. The occurrence of two transversely polarized (“doubly 

degenerated”, that is admitting any transverse polarization) modes reveals the non-local 

behavior of the crystal (i.e., the presence of spatial dispersion, as also indicated in [25], which 

also depends on how dense the array is [26]). 

 

Fig. 3. Trajectories of modal wavenumbers in the complex zk  plane for T-pol, with respect to 

(a) the z-periodicity c, and (b) the host wavenumber k . Notice that in (b), crossing the vertical 

black dash-dotted line at “ 1− ” and “1” means crossing the light line z kβ = . Arrows indicate 

direction of increasing frequency. The black dotted curves in (a) show the modal wavenumber 

trajectories in the ideal lossless case: notice the four-quadrant symmetry in this case, which is 

broken when accounting for silver losses. 

Next, in Fig. 3, we show the evolution of the modal wavenumber z z zk iβ α= +  for 

varying frequency. Namely the trajectories of the complex propagation constants are tracked 

in the complex plane ,z zβ α  in Fig. 3(a), accounting for silver losses, and also for the ideal 

lossless case. In the latter case, the four-quadrant symmetry discussed in Sec. 2 is present 

(dotted black curves). In Fig. 3(b) we show the trajectories in the complex plane ,z zβ α , 

normalized to that of the host medium k , accounting for silver losses. When silver losses are 

accounted for, the symmetry with respect to the origin in Figs. 3(a) and 3(b) is a consequence 

of the property ( ) ( )B B= −A k A k  discussed in Sec. 2; in other words, the four-quadrant 

symmetry has been broken by the presence of losses. Notice that a mode whose power flow is 

toward either the positive or negative z-direction, for which either 0zα >  or 0zα < , is 

forward (from the phase progression point of view) when 0z zα β > , whereas it is backward 
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when 0z zα β < . By looking at both Figs. 2 and 3, the forward Mode 1 and the backward 

Mode 2 could be guided in the structure in the lossy case. 

Note that the presence of two transverse modes with moderately low attenuation constant 

zα  is in agreement with what previously predicted in [9] by using the nano-transmission line 

network concept, and analytically in [25] for an ideal lossless case. 

3.2 Longitudinal polarization (L-pol) 

The dispersion diagrams for the Structure I outlined in Table 1 are shown in Fig. 4 for both 

the real and the imaginary parts of the wavenumber z z zk iβ α= +  in the case of L-pol 

(longitudinal with respect to the mode traveling direction z). Only the modes with 0zα ≥ , 

i.e., whose power flow is toward the positive z-direction, are shown. Notice again that other 

modes with normalized attenuation constant larger than / 2zcα π =  are present but not 

reported here since guided modes can travel a significant distance only when their attenuation 

constant is small, or z kα << . The case relative to ideal lossless silver nanospheres is also 

reported in Fig. 4 as a black dotted line. The almost flat portion of the curve in Fig. 4(a) 

reveals a certain degree of non-locality, and thus spatial dispersion.  

 

Fig. 4. As in Fig. 2, for L-pol. 

 

Fig. 5. As in Fig. 3, for L-pol. 

The evolution of the modal wavenumbers varying frequency is shown in the complex zk  

plane in Fig. 5. In the ideal lossless case, the four-quadrant symmetry discussed in Sec. 2 

holds also in this L-pol case as shown in Fig. 5(a). At low frequencies, Mode 1 (blue curve) is 

characterized by very small phase constant and large attenuation constant. Increasing 

frequency, the attenuation constant decreases in a small frequency region reaching a 

minimum of / 0.19zcα π ≈  at / 0.43kc π ≈ . At higher frequencies, both phase and 
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attenuation constants increase. The presence of the longitudinal mode is associated to near 

field dipole couplings among nanospheres. 

Note again that the presence of one longitudinal mode with moderately low attenuation 

constant zα  is in agreement with what previously predicted in [9,25]. 

4. Parametric analysis: comparison of modal dispersion diagrams 

4.1 Transverse polarization (T-pol) 

We compare in Fig. 6 the real and the imaginary parts of the wavenumber zk  of Mode 1, with 

T-pol, computed for the three arrays in Table 1. 

 

Fig. 6. Comparison between the wavenumbers z z zk iβ α= +  of the Mode 1, T-pol, in the three 

structures in Table 1 versus frequency, normalized to their respective z-periodicity c. (a) Real 

part and (b) imaginary part. 

It can be easily noticed that increasing the periodicities in the directions orthogonal to the 

mode traveling direction (i.e., Structure III) highly reduces the wavenumber imaginary part, 

thus allowing the mode to travel longer distances for some frequency ranges, as explained in 

Sec. 4.3. For the case of Structure II, the phase propagation constant reaches the edge of the 

BZ (this does not happen for the two other structures). Furthermore, the bandgap is wider for 

Structure II. 

4.2 Longitudinal polarization (L-pol) 

We compare in Fig. 7 the real and the imaginary parts of the wavenumber zk  for Mode 1 (L-

pol) computed for the three arrays in Table 1. 

 

Fig. 7. As in Fig. 6, for L-pol. 
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As in the previous case, it is noticed that increasing the periodicities in the directions 

orthogonal to the mode traveling direction (i.e., Structure III) highly reduces the imaginary 

part, thus allowing the mode to travel longer distances in a narrow frequency range, as 

explained in Sec. 4.3 (we also observe a slight frequency shift towards lower frequencies). 

Mode 1 in Structure II exhibits very high attenuation at all frequencies. 

4.3 Figure of merit 

In accord to the modes shown in Secs. 4.1 and 4.2, we are here interested in quantifying how 

far a mode can travel in terms of guided wavelengths. Therefore, it is convenient to define the 

figure of merit 

 .z

z

F
β

α
=  (7) 

 

Fig. 8. Comparison between the figure of merit F of the Mode 1 in the three structures in Table 

1 versus frequency. (a) Transversal and (b) longitudinal polarization. 

The higher the figure of merit F is, the longer the traveled distance in terms of guided 

wavelength is, relatively to the attenuation. We show in Fig. 8 the figure of merit versus 

frequency of the transverse and longitudinal cases analyzed in Secs. 4.1 and 4.2, comparing F 

of the Mode 1 for both T-pol and L-pol, for the three structures in Table 1. In both 

polarizations, the modes that show the best performance are the ones in Structure III in Table 

1, for which 2a b c= = : for the T-pol case, the peak of F is about 47 10× , whereas it is about 

19 for the L-pol case. Also notice how the figure of merit for Structure III for T-pol is large 

for a wide frequency range analyzed (i.e., about 100-650 THz), whereas for L-pol is large 

only for a narrow frequency range (i.e., 790-850 THz). In Structure III, modes with T-pol and 

L-pol can travel longer distances in terms of guided wavelengths than in the other two arrays, 

as can be inferred by the graphs in Fig. 8. 

5. 3D lattice with finite thickness along z: transmission, reflection and absorption 

We analyze propagation in Structure I in Table 1 (Fig. 1) made of 10 layers of silver 

nanospheres stacked along the z-direction (Fig. 9), by using (i) HFSS and (ii) the SDA with 

the Mie polarization expression in Eq. (2). The stack is illuminated by a normally incident 

plane wave traveling toward +z, and the magnitude of transmission T and reflection R of the 

stack are shown in Fig. 9, together with the absorption 
2 2

1 ,A T R= − −  evaluated in dB as 

10Log A. Results in Fig. 9 show good agreement between the HFSS full-wave simulation and 

the SDA theoretical results (also the phase of R and T obtained from the two methods are in 

good agreement, not shown). The strong stop-band between 730 THz ( / 0.365kc π = ) and 

890 THz ( / 0.445kc π = ) is due to the large imaginary part of the attenuation constant zα  of 
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Mode 1 shown in Fig. 2. Notice also that absorption A is particularly strong at the edges of the 

stop-band. In the evaluation of the SDA results we have used the Ewald representation of the 

dyadic GF for 2D periodic arrays reported in [27]. 

 

Fig. 9. Magnitude of transmission, reflection and absorption coefficients for a stack of 10 

layers of Structure I (only a transverse cut in the xz plane of a 3D array is shown). Results 

obtained by using the SDA and HFSS are in good agreement. 

6. Homogenization: effective refractive index 

In general, considering only modes with a moderately low attenuation constant zα , a plane 

wave impinging on the composite material in Fig. 9 could excite any of the permitted modes, 

i.e., two modes with T-pol and one mode with L-pol, with different amplitudes (as also 

briefly discussed in [9]). However, for a normal incident plane wave, only modes with T-pol 

could be excited. We will show in Sec. 6.2 that even though the analyzed structure has a 

certain degree of spatial dispersion (as mentioned in Sec. 3), Mode 1 (T-pol) in Sec. 3.1 is 

“dominant”. Accordingly, a wave in the composite material, in the case of transverse 

polarization, could be described with good approximation as a TEM wave in a homogeneous 

material, which can in turn be represented by an effective refractive index. Though, strictly 

speaking, the effective permittivity characterizing the crystal as a homogenized material has a 

small degree of non-locality (spatial dispersion) [9,25]. 

6.1 NRW retrieval method and comparison with theoretical results 

Transmission and reflection coefficients for a stack of layers are here used to retrieve the 

effective refractive index of the metamaterial by using the Nicholson-Ross-Weir (NRW) 

method [28–33]. Treating the composite slab as a uniform continuous medium with same 

thickness t, according to NRW, the complex effective refractive index can be retrieved by 

 

2 2
1

eff
0 0

1
cos

2 2
,

R T

T q
n

k t k t

π

−  − +
  
 = ± +  (8) 

where q  is an integer to be determined, and t Nc= , with N  denoting the number of layers 

and c  the separation between two contiguous layers. We address the reader to [31,32] for 

guidelines on how to choose q and +/− in Eq. (8). 

The comparison of the retrieved effective refractive index of Structure I is then performed 

using three different methods: (i) by normalizing the modal wavenumber obtained via SDA 

shown in Sec. 3, as eff 0/zn k k= , (ii) by using the Maxwell Garnett formulas [34,35] with the 
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polarization expression from Mie theory (the comparison with the quasistatic polarizability 

expression (Clausius Mossotti) has been reported in [36]), and (iii) by using the NRW 

algorithm in Eq. (8), for N layers of arrayed metallic nanospheres, stacked along the z-

direction, with T and R computed via HFSS simulation. The three methods provide 

comparable results as shown in Fig. 10 (where N = 10). Note that large values of refractive 

index are obtained near f = 750 THz ( / 0.375kc π = ), as well as very small ones (close to 

zero) near f = 840 THz ( / 0.42kc π = ), showing that this material, besides providing small 

guided wavelengths, can also provide an epsilon near zero (ENZ) artificial medium in a 

narrow frequency band. Losses can be rather low, in the high refractive index region, as also 

shown by the figure of merit in Fig. 8, and in the ENZ region. 

 

Fig. 10. Effective refractive index retrieved by three different methods: Mode analysis 

eff 0/zn k k= , Maxwell Garnett (MG) using Mie polarizability in Eq. (2), and the NRW 

method in Eq. (8) from HFSS simulations of 10 layers. 

 

Fig. 11. Effective refractive index retrieved by using NRW from HFSS for different number of 

layers (4, 6 and 10), and by mode analysis. 

In Fig. 11 we show the results obtained by using the NRW method (with HFSS 

simulations) for N = 4 and N = 6 layers of metallic nanospheres stacked along the z-direction 

in comparison to the result in Fig. 10. Observe that both real and imaginary parts agree well, 

although the imaginary part of the NRW-HFSS method is smaller around the bandgap for 

increasing number of layers. This is indeed in the region where T  is close to 0. In this 

region, the HFSS results show some discrepancies probably due to the sensitivity of Eq. (8) to 

small perturbations of T , as 0T →  [37] (which are mainly due to the HFSS numerical 

precision). To understand if this is true, in Fig. 12 we show the calculations for the same stack 

of layers by using the SDA, which is more stable numerically than HFSS, especially for small 
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T . Results from the NRW-SDA method are in good agreement to those obtained with mode 

analysis for both 4 (where the lowest 70 dBT ≈ −  ) and 6 layers (where the lowest 

110 dBT ≈ −  ) (in Fig. 11 the simulation with 6 layers was already in disagreement). 

However, in the case of 10 layers, in the frequency region of extremely low value of T , also 

the NRW-SDA provides inaccurate results in the bandgap, due to the limited SDA numerical 

precision in the numerical algorithm for the estimation of the transmission coefficient and to 

the high sensitivity of Eq. (8) explained above. 

 

Fig. 12. As in Fig. 11, but using R and T computed through SDA. 

6.2 Field fitting retrieval method 

From the HFSS full-wave simulation of 10 layers of plasmonic nanospheres shown in Sec. 5, 

illuminated by a normally incident plane wave traveling toward +z, with electric field 

polarized along y, we extract the y component of the electric field (1 point per layer, at the 

center of each sphere) at two representative frequencies of the curves reported in Fig. 10: first 

at 745 THz ( / 0.3725kc π = ), corresponding to large [ ]effRe n  and low [ ]effIm n , and then 

at 875 THz ( / 0.4375kc π = ), corresponding to low [ ]effRe n  and low [ ]effIm n . 

At each of the two frequency points the total field in each sphere is represented as the 

superposition of a direct ( E+ ) and a reflected ( E− ) wave, pertaining to a single mode (T-pol) 

with complex wavenumber zk , traveling along the ±z directions (see Fig. 9) as follows 

 ( )
( ) ( )1 1

2 2 ,
z zik n c ik n c

yE n E e E e
− − −

+ −= +  (9) 

where 1,2,...,10n = , and , , and zE E k+ −    are all unknown complex valued. The ( )yE n  

behavior obtained via HFSS is shown Figs. 13 and 14 (blue circles), at 745 and 875 THz, 

respectively. We then perform a curve fitting of the extracted data by using Eq. (9), and we 

report the field matching curves (both magnitude and phase) in comparison to the extracted 

full-wave simulation fields in Figs. 13 and 14 (blue curves). It can be observed that the fitting 

curves are in good agreement with the extracted fields, thus we can conclude that the field can 

be represented as the superposition of a direct and a reflected wave pertaining to a single 

mode. Moreover, from the fitting, we extract 0 2.15 0.07zk k i≈ +  at 745 THz (which is 

compared with the mode solution in Fig. 10 where 0 2.13 0.07zk k i≈ + ) 

and 0 0.40 0.07zk k i≈ +  at 875 THz (which is compared with the mode solution in Fig. 10 

where 0 0.40 0.07zk k i≈ + ). A good agreement is then observed. Also, looking at the phase 
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information in Figs. 13(b) and 14(b), it can be easily noticed that the phase accumulated by 

the wave at 745 THz after the 10 layers is much larger than the one at 875 THz, showing that 

the latter travels very slowly inside the structure, confirming that at this frequency we have an 

ENZ composite material. Moreover, the ratio between the reflected and the direct wave 

( ) ( ) ( )1
2

2
0

zik n c
n e

− −
Ψ = Ψ  (with ( )0 E E− +Ψ = ) has been verified to be consistent for every 

n, where ( ) 0.0780 0.13 ieΨ =  at 745 THz and ( ) 1.550 0.06 ieΨ =  at 875 THz. As a 

consequence, we can conclude that Mode 1 for Structure I, reported in the dispersion 

diagrams in Fig. 2, is dominant. 

 

Fig. 13. Field in 10 layers of plasmonic nanospheres. Comparison between the HFSS full-wave 

field (Simulation) and the fitting result at 745 THz (i.e., large [ ]effRe n  and low [ ]effIm n ). 

 

Fig. 14. As in Fig. 13, at 875 THz (i.e., low [ ]effRe n  and low [ ]effIm n ). 

7. Conclusion 

This work provides a description of modal analysis in 3D periodic arrays of metallic 

nanospheres. We observe the presence of one longitudinal mode and two transverse modes, 

one forward and one backward. The performance of the guided Mode 1 for both T-pol and L-

pol in the three arrays in Table 1 have been compared, and it has been noticed that the modes 

can travel longer distances in terms of guided wavelengths when the periodicities in the 

directions transversal to the mode traveling direction are larger than the periodicity along the 

mode traveling direction (i.e., Structure III in Table 1). In case of T-pol, Mode 1 has been 

found to be dominant, allowing for the description of the composite material in terms of 

homogenized effective refractive index. This has been indeed retrieved by four different 

methods, in good agreement with each other. The method shown in this paper can be applied 

to a variety of composite materials made of 3D periodic arrays of nanoparticles. 
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Appendix A: Ewald representation for the dyadic GF for 3D periodic arrays 

The 3D array regularized dyadic GF reported above Eq. (4) can be computed as 

 ( ) ( )2
0 B 0 B

0

1
, , , , ,

h

k G
ε ε

∞ ∞ = + ∇∇
 

G r r k I r r k
� �

 (10) 

where ( )0 B, ,G∞ r r k
�

 is the regularized scalar GF, not singular at 0=r r , defined as 

 ( )
( )

B
0 B

0,0,0

1
, , ,

4

n
n

ikR
i

nn

e
G e

Rπ
⋅∞

≠

= ∑ k d
r r k

�

 (11) 

with ( )1 2 3, ,n n n n=  a triple index, 1 2 3ˆ ˆ ˆn n a n b n c= + +d x y z , 0n n= − −R r r d , n nR = R , 

and ∇∇  denotes the Hessian dyadic differential operator. According to the Ewald 

representation [38,39] the dyadic GF is split into the sum 

 ( ) ( ) ( )0 B 0 B 0 Bspectral spatial, , , , , ,
∞

= +G r r k G r r k G r r k
� �

 (12) 

of a spectral and a spatial dyadic part, which are obtained by using in Eq. (10) an 

analogous split of the scalar GF ( ) ( ) ( )0 B spectral 0 B spatial 0 B, , , , , ,G G G
∞ = +r r k r r k r r k
� �

. The 

expressions of these latter two scalar terms, the spectral ( )spectral 0 B, ,G r r k  and the 

regularized spatial ( )spatial 0 B, ,G r r k
�

 can be found in [13,14], and in the particular case where 

0= =r r 0 , as required in Eq. (6), it follows that 

 ( )

2

2
4

spectral 0 0 B 2

1
, , ,

n

E

n n

e
G

abc

γ

γ

−

= ∑r r k  (13) 

 ( ) ( )
( )

( )B

spatial 0 0 B

0,0,0

0 21
, , ,

8 8

n

n

i

nn

f ike
G f R

Rπ π

⋅

≠

′ −
= +∑

k d

r r k
�

 (14) 

where 
22 2

Bn n kγ = + −k k , with ( ) ( ) ( )1 2 3ˆ ˆ ˆ2 2 2n n a n b n cπ π π= + +k x y z , and 

 ( ) ( ) ( )erfc erfc .n nikR ikR
nf R e eβ β− +− += +  (15) 

Here ( )erfc β ±
 denotes the complementary error function of argument 

( )2nR E ik Eβ ± = ± , where E  is the Ewald parameter as in [40], which is in general chosen 

as 

 
( )

1/4
2 2 2 2

2 2 2

1/ 1/ 1/
.

a b c
E

a b c

π + +
 =
 + +
  

 (16) 

Also, in Eq. (14) a prime ( f ′ ) denotes a derivative of f  with respect to its argument. 

Differentiating Eqs. (13) and (14) in rectangular and spherical coordinates, respectively, 

leads to the explicit representations for the Hessian dyads 
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abc
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−
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where 

 
( ) ( ) ( ) ( ) ( )

,
2 3 2 3spatial,

3 3
ˆ ˆn n n n n

n nn
nn n n n

f R f R f R f R f R

RR R R R

   ′ ′′ ′
= − + − +   
   
   

F I R R  (19) 

with ˆ /n n nR=R R . 

In Eqs. (19) and (18), a double and a triple prime ( f ′′  and f ′′′ ) denote the second and 

third derivatives of f in Eq. (15) with respect to its argument, respectively. 

As a last remark, we want to mention that there is a difference between the scalar and the 

dyadic GF in terms of number of elements needed for convergence in Eqs. (13)-(14) and (17)-

(18): namely, we have observed that it was sufficient to use 11 terms for each index (i.e., 

1 2 3, , 5,...,5n n n = − ) to obtain a converging dyadic GF, whereas 3 terms for each index (i.e., 

1 2 3, , 1,0,1n n n = − ) were usually enough for the scalar GF to converge. 
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