Fragmentation of wind‐blown snow crystals
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Fragmentation of wind‐blown snow crystals

Abstract

Abstract: Understanding the dynamics driving the transformation of snowfall crystals into blowing snow particles is critical to correctly account for the energy and mass balances in polar and alpine regions. Here we propose a fragmentation theory of fractal snow crystals that explicitly links the size distribution of blowing snow particles to that of falling snow crystals. We use discrete element modeling of the fragmentation process to support the assumptions made in our theory. By combining this fragmentation model with a statistical mechanics model of blowing snow, we are able to reproduce the characteristic features of blowing snow size distributions measured in the field and in a wind tunnel. In particular, both model and measurements show the emergence of a self‐similar scaling for large particle sizes and a systematic deviation from this scaling for small particle sizes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View