Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Phosphatidic acid affects structural organization of phosphatidylcholine liposomes. A study of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammonium-phenyl)-6-phenyl,1,3,5-hexatriene (TMA-DPH) fluorescence decay using distributional analysis

Abstract

The fluorescence decay of 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) was used to study micro-heterogeneity of 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC) liposomes and to characterize the effect of phosphatidic acid on the correlation between fluorescence microheterogeneity and membrane permeability. The fluorescence decay, measured using multifrequency phase fluorometry, has been analyzed either by using a model of discrete exponential components or a model of continuous distribution of lifetime values. Both analyses have shown that TMA-DPH decay is characterized by two components: a long one of about 9 ns and a short one of about 5 ns. In the gel phase, at variance with previous DPH studies, the short component was associated with a large fractional intensity. The distributional analysis showed changes of lifetime values and width in correspondence to the calorimetric transitions. The presence of egg phosphatidic acid increased both long lifetime values and distributional width. The use of TMA-DPH as a probe to evaluate membrane heterogeneity using the distributional width is discussed. The effect of phosphatidic acid on the membrane surface and in the hydrophobic core has been related to its structural properties and to its role in water penetration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View