Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Towards development of disease-modifying therapy for Alzheimer's disease using redox chemical biology pathways

Abstract

Redox modifications are described that can be harnessed for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). The approach has shown potential therapeutic efficacy in AD in both transgenic mouse and hiPSC cerebral organoids models. In this review, two such redox targets are highlighted. First, protein S-nitrosylation of the NMDA-type of glutamate receptor is described as a potential therapeutic target. Second, an S-alkylation reaction of critical, redox-active cysteine thiol(s) on the protein KEAP1 to activate the anti-oxidant/anti-inflammatory transcription factor NRF2 is proposed. In both approaches, we utilize compounds described as pathologically activated therapeutics (or "PAT" drugs), which can only be activated by the disease process that they then combat. Thus, PAT drugs remain relatively innocuous and therefore clinically-tolerated in normal tissue in the absence of disease, thereby avoiding severe side effects both systemically and in the brain.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View