Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Particle transport as a result of resonant magnetic perturbations

Abstract

This thesis makes contributes to field of plasma physics with a particular focus on particle transport as a result of resonant magnetic perturbations (RPMs) in magnetic confinement devices (Tokamaks). RPMs have proven to be a useful technique to suppress edge localized modes (ELMs) that under certain conditions can damage the confinement device. In order to suppress ELMs, these magnetic perturbations are created to be be resonant at the edge of the plasma (i.e., by selecting an n=3 spectrum and a q₉₅ = 3.6). However, RMPs lead to a changes in the density profile, not only in the pedestal area, but also deeper in the plasma core, limiting plasma performance. As a first contribution in this thesis we carefully investigate density pump-out, and show that it is the result of a change in particle transport (as opposed to a change in neutral fueling). A second contribution of this work is the introduction of a weighted magnetic diffusion coefficient (D/OFL) that allows us to make quantitative comparisons between experimental datasets from different Tokamak devices. By comparing D/OFL for MAST L-modes and DIII-D H-modes, we find that both machines exhibit a very different density pump-out for similar D/OFL values. Since turbulent particle transport is very different for L and H -modes, we investigate, as a third contribution of this work, the influence of RMPs on turbulent particle transport in both MAST and DIII-D. We find that while an increase in turbulent transport on MAST correlates well with density pump-out, no meaningful correlation was found for pedestal density changes in DIII-D. Therefore, as a final contribution in this thesis, we investigate how convective particle transport parallel to the magnetic field alters the density profiles. We compare the increase in convective parallel particle transport and find good agreement with experimental density profiles

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View