Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Machine learning-based modeling of acute respiratory failure following emergency general surgery operations.

Abstract

Background

Emergency general surgery (EGS) operations are associated with substantial risk of morbidity including postoperative respiratory failure (PRF). While existing risk models are not widely utilized and rely on traditional statistical methods, application of machine learning (ML) in prediction of PRF following EGS remains unexplored.

Objective

The present study aimed to develop ML-based prediction models for respiratory failure following EGS and compare their performance to traditional regression models using a nationally-representative cohort.

Methods

Non-elective hospitalizations for EGS (appendectomy, cholecystectomy, repair of perforated ulcer, large or small bowel resection, lysis of adhesions) were identified in the 2016-18 Nationwide Readmissions Database. Factors associated with PRF were identified using ML techniques and logistic regression. The performance of XGBoost and logistic regression was evaluated using the receiver operating characteristic curve and coefficient of determination (R2). The impact of PRF on mortality, length of stay (LOS) and hospitalization costs was secondarily assessed using generalized linear models.

Results

Of 1,003,703 hospitalizations, 8.8% developed PRF. The XGBoost model exhibited slightly superior discrimination compared to logistic regression (0.900, 95% CI 0.899-0.901 vs 0.894, 95% CI 0.862-0.896). Compared to logistic regression, XGBoost demonstrated excellent calibration across all risk levels (R2: 0.998 vs 0.962). Congestive heart failure, neurologic disorders, and coagulopathy were significantly associated with increased risk of PRF. After risk-adjustment, PRF was associated with 10-fold greater odds (95% confidence interval (CI) 9.8-11.1) of mortality and incremental increases in LOS by 3.1 days (95% CI 3.0-3.2) and $11,900 (95% CI 11,600-12,300) in costs.

Conclusions

Logistic regression and XGBoost perform similarly in overall classification of PRF risk. However, due to superior calibration at extremes of risk, ML-based models may prove more useful in the clinical setting, where probabilities rather than classifications are desired.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View