Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Power law singularity for cavity collapse in a compressible Euler fluid with Tait–Murnaghan equation of state

Published Web Location

https://arxiv.org/abs/2303.09025Creative Commons 'BY' version 4.0 license
Abstract

Motivated by the high energy focusing found in rapidly collapsing bubbles, which is relevant to implosion processes that concentrate energy density, such as sonoluminescence, we consider a calculation of an empty cavity collapse in a compressible Euler fluid. We review and then use the method based on similarity theory that was previously used to compute the power law exponent n for the collapse of an empty cavity in water during the late stage of the collapse. We extend this calculation by considering different fluids surrounding the cavity, all of which are parametrized by the Tait-Murnaghan equation of state through parameter γ. As a result, we obtain the dependence of n on γ for a wide range of γ, and indeed see that the collapse is sensitive to the equation of state of an outside fluid.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View