Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Disruption of transcription–translation coordination in Escherichia coli leads to premature transcriptional termination

Abstract

Tight coordination between transcription and translation is crucial to maintaining the integrity of gene expression in bacteria, yet how bacteria manage to coordinate these two processes remains unclear. Possible direct physical coupling between the RNA polymerase and ribosome has been thoroughly investigated in recent years. Here, we quantitatively characterize the transcriptional kinetics of Escherichia coli under different growth conditions. Transcriptional and translational elongation remain coordinated under various nutrient conditions, as previously reported. However, transcriptional elongation was not affected under antibiotics that slowed down translational elongation. This result was also found by introducing nonsense mutation that completely dissociated transcription from translation. Our data thus provide direct evidence that translation is not required to maintain the speed of transcriptional elongation. In cases where transcription and translation are dissociated, our study provides quantitative characterization of the resulting process of premature transcriptional termination (PTT). PTT-mediated polarity caused by translation-targeting antibiotics substantially affected the coordinated expression of genes in several long operons, contributing to the key physiological effects of these antibiotics. Our results also suggest a model in which the coordination between transcriptional and translational elongation under normal growth conditions is implemented by guanosine tetraphosphate.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View