Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Effects of calorie restriction on life span of microorganisms

Abstract

Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View