Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Electronic Theses and Dissertations bannerUC Irvine

Design Space Exploration in Cyber-Physical Systems

Abstract

Cyber physical systems (CPS) integrate a variety of engineering areas such as control, mechanical and computer engineering in a holistic design effort. While interdependencies between the different disciplines are key attributes of CPS design science, little is known about the impact of design decisions of the cyber part on the overall system qualities. To investigate these interdependencies, this paper proposes a simulation-based Design Space Exploration (DSE) framework that considers detailed cyber system parameters such as cache size, bus width, and voltage levels in addition to physical and control parameters of the CPS. We propose an exploration algorithm that surfs the parameter configurations in the cyber physical sub-systems, in order to approximate the Pareto-optimal design points with regards to the trade-os among the design objectives, such as energy consumption and control stability. We apply the proposed framework to a network control system for an inverted-pendulum application. The presented holistic evaluation of the identified Pareto-points reveals the presence of non-trivial trade-os, which are imposed by the control, physical, and detailed cyber parameters. For instance the identified energy and control optimal design points comprise configurations with a wide range of CPU speeds, sample times and cache configuration following non-trivial zig-zag patterns. The proposed framework could identify and manage those trade-os and, as a result, is an imperative rst step to automate the search for superior CSP configurations.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View