Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations bannerUC Santa Barbara

Heterogeneous Integrated Photonic Transceiver on Silicon

Abstract

The demand for high-speed and low-cost short-distance data links, eventually for chip-level optical communication, has led to large efforts to develop high density photonics integrated circuits (PICs) to decrease the power consumption and unit price. Particularly, silicon based photonic integration promise future high-speed and cost-effective optical interconnects to enable exascale performance computers and datacenters. High-level integration of all photonics components on chip, including high speed modulators and photodetectors, and especially lasers, is required for scalable and energy efficient system topology designs. This is enabled by silicon-based heterogeneous integration approach, which transfers different material systems to the silicon substrate with a complementary metal–oxide–semiconductor (CMOS) compatible process.

In this thesis, our work focuses on the development of silicon photonic integrated circuit in the applications of high speed chip level optical interconnects. A full library of functional devices is demonstrated on silicon, including low threshold distributed feedback (DFB) lasers as a low power laser source; high extinction ratio and high speed electroabsorption modulators (EAM) and ultra-linear Mach-Zehnder interferometer (MZI) modulators for signal modulation in the data transmitter; high speed photodetectors for the data receiver; and low loss silicon components, such as arrayed waveguide grating (AWG) routers and broadband MZI based switches. The design and characterization of those devices are discussed in this thesis.

A highly integrated photonic circuit can be achieved with co-design and co-process of all types of functional photonic devices. Selective die bonding method is performed to integrate multiple III-V dies with different band-gap onto a single photonic die. A reconfigurable network-on-chip circuit was proposed and demonstrated, with state-of-the-art high-speed silicon transceiver chip. With over 400 active and passive components heterogeneously integrated on silicon, photonic circuit with multiple- wavelength-division multiplexing (WDM) transceiver nodes achieved a total capacity up to 8×8×40 Gbps. This high capacity and dense integrated heterogenous circuit shows its potential as a solution for future ultra-high speed inter- and intra-chip interconnects.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View