Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization

Abstract

A bias-free photochemical diode, in which a p-type photocathode is connected to an n-type photoanode to harness light for driving photoelectrochemical reduction and oxidation pairs, serves as a platform for realizing light-driven fuel generation from CO2. However, the conventional design, in which cathodic CO2 reduction is coupled with the anodic oxygen evolution reaction (OER), requires substantial energy input. Here we present a photochemical diode device that harnesses red light (740 nm) to simultaneously drive biophotocathodic CO2-to-multicarbon conversion and photoanodic glycerol oxidation as an alternative to the OER to overcome the above thermodynamic limitation. The device consists of an efficient CO2-fixing microorganism, Sporomusa ovata, interfaced with a silicon nanowire photocathode and a Pt–Au-loaded silicon nanowire photoanode. This photochemical diode operates bias-free under low-intensity (20 mW cm−2) red light irradiation with ~80% Faradaic efficiency for both the cathodic and anodic products. This work provides an alternative photosynthetic route to mitigate excessive CO2 emissions and efficiently generate value-added chemicals from CO2 and glycerol. (Figure presented.)

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View