- Main
Drug Release Kinetics from Poly(ethylene glycol) Hydrogels for Wound Dressings
- Cook, Kaitlyn A
- Advisor(s): Kasko, Andrea M
Abstract
Prolonged field care (PFC) for treatment of battlefield and trauma injuries requires the advancement of wound management techniques in order to prevent loss of life or limb prior to hospitalization in austere combat locations where medical evacuation is delayed. The goal of this project is to design a hydrogel wound dressing capable of providing sustained release of antibiotics, analgesics, and hemostatic agents over a three-day period. Poly(ethylene glycol) (PEG) hydrogels were fabricated through crosslinking using redox initiators – ammonium persulfate (APS) and tetramethylethylene diamine (TEMED). Hydrogels were characterized through the mass swelling ratio (qm) to determine the mesh size (ξ) and thus qualitatively predict the release kinetics of the therapeutic drugs. Hydrogels with incorporated therapeutic drug were placed in known volumes of deionized water, from which aliquots were taken at set time intervals. A UV Visible Spectrophotometer determined the aliquots’ absorbance which determined the cumulative release kinetics. Ultimately, three-day sustained release of the therapeutic drugs from the PEG hydrogel was achieved through retarding the diffusion of the therapeutic drugs by incorporating acrylic acid.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-