Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Functional Genetic Variation in Dopamine Signaling Moderates Prefrontal Cortical Activity During Risky Decision Making

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707816/
No data is associated with this publication.
Abstract

Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item