Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Yield strength of Ni–Al–Cr superalloy under pressure

Abstract

Ni based superalloy Ni-Al-Cr with γ and γ′ phase was studied under high pressure up to 30 GPa using diamond anvil cell technique. In-situ X-ray diffraction data was collected on these alloys under hydrostatic and non-hydrostatic conditions. Cubic phase remains stable up to the highest pressure of about 30 GPa. Bulk modulus and its pressure derivative obtained from the volume compression of pressure data are K = 166.6 ± 5.8 GPa with K′ set to 4 under hydrostatic conditions and K = 211.3 ± 4.7 GPa with K′ set to 4 for non-hydrostatic conditions. Using lattice strain theory, maximum shear stress 't' was determined from the difference between the axial and radial stress components in the sample. The magnitude of shear stress suggests that the lower limit of compressive strength increases with pressure and shows maximum yield strength of 1.8 ± 0.3 GPa at 20 GPa. Further, we have also determined yield strength using pressure gradient method. In both the methods, yield strength increases linearly with applied pressure. The results are found to be in good agreement with each other and the literature values at ambient conditions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View