Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

TIPRL Inhibits Protein Phosphatase 4 Activity and Promotes H2AX Phosphorylation in the DNA Damage Response


Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View