- Main
Transcriptomic analysis reveals that BMP4 sensitizes glioblastoma tumor-initiating cells to mechanical cues
Published Web Location
https://doi.org/10.1016/j.matbio.2019.06.002Abstract
The poor prognosis of glioblastoma (GBM) is associated with a highly invasive stem-like subpopulation of tumor-initiating cells (TICs), which drive recurrence and contribute to intra-tumoral heterogeneity through differentiation. These TICs are better able to escape extracellular matrix-imposed mechanical restrictions on invasion than their more differentiated progeny, and sensitization of TICs to extracellular matrix mechanics extends survival in preclinical models of GBM. However, little is known about the molecular basis of the relationship between TIC differentiation and mechanotransduction. Here we explore this relationship through a combination of transcriptomic analysis and studies with defined-stiffness matrices. We show that TIC differentiation induced by bone morphogenetic protein 4 (BMP4) suppresses expression of proteins relevant to extracellular matrix signaling and sensitizes TIC spreading to matrix stiffness. Moreover, our findings point towards a previously unappreciated connection between BMP4-induced differentiation, mechanotransduction, and metabolism. Notably, stiffness and differentiation modulate oxygen consumption, and inhibition of oxidative phosphorylation influences cell spreading in a stiffness- and differentiation-dependent manner. Our work integrates bioinformatic analysis with targeted molecular measurements and perturbations to yield new insight into how morphogen-induced differentiation influences how GBM TICs process mechanical inputs.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-