Skip to main content
Download PDF
- Main
Prenatal exposure to per- and polyfluoroalkyl substances and maternal and neonatal thyroid function in the Project Viva Cohort: A mixtures approach
Published Web Location
https://doi.org/10.1016/j.envint.2020.105728Abstract
Background
Maternal and neonatal thyroid function is critical for growth and neurodevelopment. Exposure to individual per- and polyfluoroalkyl substances (PFAS) can alter circulating thyroid hormone levels, but few studies have investigated effects of combined exposure to multiple PFAS.Objectives
Estimate associations of exposure to multiple PFAS during early pregnancy with maternal and neonatal thyroid function.Methods
The study population consisted of 726 mothers and 465 neonates from Project Viva, a Boston, Massachusetts area longitudinal pre-birth cohort. We measured six PFAS [perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorohexane sulfonate (PFHxS), 2-(N-ethyl-perfluorooctane sulfonamido)acetate (EtFOSAA), and 2-(N-methyl-perfluorooctane sulfonamido)acetate (MeFOSAA)] and thyroxine (T4), Free T4 Index (FT4I), and thyroid stimulating hormone (TSH) in maternal plasma samples collected during early pregnancy, and neonatal T4 in postpartum heel sticks. We estimated individual and joint effects of PFAS exposure with thyroid hormone levels using weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR), and evaluated potential non-linearity and interactions among PFAS using BKMR.Results
Higher concentrations of the PFAS mixture were associated with significantly lower maternal FT4I, with MeFOSAA, EtFOSAA, PFOA, and PFHxS contributing most to the overall mixture effect in BKMR and WQS regression. In infants, higher concentrations of the PFAS mixture were associated with lower T4 levels, primarily in males, with PFHxS and MeFOSAA contributing most in WQS, and PFHxS contributing most in BKMR. The PFAS mixture was not associated with maternal T4 or TSH levels. However, in maternal BKMR analyses, ln-PFOS was positively associated with T4 levels (Δ25th to 75th percentile: 0.21 µg/dL; 95% credible interval: -0.03, 0.47) and ln-PFHxS was associated with a non-linear effect on TSH levels.Conclusions
These findings support the hypothesis that there may be combined effects of prenatal exposure to multiple PFAS on maternal and neonatal thyroid function, but the direction and magnitude of these effects may vary across individual PFAS.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%