Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent


Stochastic gradient descent (SGD) algorithms, with constant momentum and its variants such as Adam, are the optimization methods of choice for training deep neural networks (DNNs). There is great interest in speeding up the convergence of these methods due to their high computational expense. Nesterov accelerated gradient with a time-varying momentum (NAG) improves the convergence rate of gradient descent for convex optimization using a specially designed momentum; however, it accumulates error when the stochastic gradient is used, slowing convergence at best and diverging at worst. In this paper, we propose scheduled restart SGD (SRSGD), a new NAG-style scheme for training DNNs. SRSGD replaces the constant momentum in SGD by the increasing momentum in NAG but stabilizes the iterations by resetting the momentum to zero according to a schedule. Using a variety of models and benchmarks for image classification, we demonstrate that, in training DNNs, SRSGD significantly improves convergence and generalization; for instance, in training ResNet-200 for ImageNet classification, SRSGD achieves an error rate of 20.93% versus the benchmark of 22.13%. These improvements become more significant as the network grows deeper. Furthermore, on both CIFAR and ImageNet, SRSGD reaches similar or even better error rates with significantly fewer training epochs compared to the SGD baseline. Our implementation of SRSGD is available at

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View