Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Muscle atrophy and fatty infiltration after an acute rotator cuff repair in a sheep model.

Abstract

Introduction

rotator cuff tears (RCTs) are the most common tendon injury seen in orthopedic patients. Muscle atrophy and fatty infiltration of the muscle are crucial factors that dictate the outcome following rotator cuff surgery. Though less studied in humans, rotator cuff muscle fibrosis has been seen in animal models as well and may influence outcomes as well. The purpose of this study was to determine if the rotator cuff would develop muscle changes even in the setting of an acute repair in a sheep model. We hypothesized that fatty infiltration and fibrosis would be present even after an acute repair six months after initial surgery.

Methods

twelve female adult sheep underwent an acute rotator cuff tear and immediate repair on the right shoulder. The left shoulder served as a control and did not undergo a tear or a repair. Six months following acute rotator cuff repairs, sheep muscles were harvested to study atrophy, fatty infiltration, and fibrosis by histological analysis, western blotting, and reverse transcription polymerase chain reaction (RT-PCR).

Results

the repair group demonstrated an increase expression of muscle atrophy, fatty infiltration, and fibrosis related genes. Significantly increased adipocytes, muscle fatty infiltration, and collagen deposition was observed in rotator cuff muscles in the tendon repair group compared to the control group.

Conclusions

rotator cuff muscle undergoes degradation changes including fatty infiltration and fibrosis even after the tendons are repair immediately after rupture.

Level of evidence

Basic Science Study.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View