Skip to main content
eScholarship
Open Access Publications from the University of California

The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages

  • Author(s): Shi, S
  • Nuccio, EE
  • Shi, ZJ
  • He, Z
  • Zhou, J
  • Firestone, MK
  • et al.

Published Web Location

https://doi.org/10.1111/ele.12630
Abstract

© 2016 John Wiley & Sons Ltd/CNRS. While interactions between roots and microorganisms have been intensively studied, we know little about interactions among root-associated microbes. We used random matrix theory-based network analysis of 16S rRNA genes to identify bacterial networks associated with wild oat (Avena fatua) over two seasons in greenhouse microcosms. Rhizosphere networks were substantially more complex than those in surrounding soils, indicating the rhizosphere has a greater potential for interactions and niche-sharing. Network complexity increased as plants grew, even as diversity decreased, highlighting that community organisation is not captured by univariate diversity. Covariations were predominantly positive (> 80%), suggesting that extensive mutualistic interactions may occur among rhizosphere bacteria; we identified quorum-based signalling as one potential strategy. Putative keystone taxa often had low relative abundances, suggesting low-abundance taxa may significantly contribute to rhizosphere function. Network complexity, a previously undescribed property of the rhizosphere microbiome, appears to be a defining characteristic of this habitat.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View