Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Short‐echo three‐dimensional H‐1 MR spectroscopic imaging of patients with glioma at 7 tesla for characterization of differences in metabolite levels

Abstract

Background

The purpose of this study was to evaluate the feasibility of using a short echo time, three-dimensional H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7 Tesla (T) to assess the metabolic signature of lesions for patients with glioma.

Methods

Twenty-nine patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (echo time = 30 ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (∼10 min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM).

Results

Levels of glutamine, myo-inositol, glycine, and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared with those in the NAWM (P < 0.05), while N-acetyl aspartate to tCr were significantly decreased (P < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (P = 0.0137), while glutamate to tCr was significantly reduced (P = 0.0012).

Conclusion

The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View