Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Integrin alpha V beta 3 targeted dendrimer‐rapamycin conjugate reduces fibroblast‐mediated prostate tumor progression and metastasis

Published Web Location

https://doi.org/10.1002/jcb.26727
Abstract

Therapeutic strategies targeting both cancer cells and associated cells in the tumor microenvironment offer significant promise in cancer therapy. We previously reported that generation 5 (G5) dendrimers conjugated with cyclic-RGD peptides target cells expressing integrin alpha V beta 3. In this study, we report a novel dendrimer conjugate modified to deliver the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. In vitro analyses demonstrated that this drug conjugate, G5-FI-RGD-rapamycin, binds to prostate cancer (PCa) cells and fibroblasts to inhibit mTOR signaling and VEGF expression. In addition, G5-FI-RGD-rapamycin inhibits mTOR signaling in cancer cells more efficiently under proinflammatory conditions compared to free rapamycin. In vivo studies established that G5-FI-RGD-rapamycin significantly inhibits fibroblast-mediated PCa progression and metastasis. Thus, our results suggest the potential of new rapamycin-conjugated multifunctional nanoparticles for PCa therapy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View