Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Geographic Differences in Persistent Organic Pollutant Levels of Yellowfin Tuna

Published Web Location

https://doi.org/10.1289/ehp518
Abstract

Background

Fish are a source of persistent organic pollutants (POPs) in the human diet. Although species, trophic level, and means of production are typically considered in predicting fish pollutant load, and thus recommendations of consumption, capture location is usually not accounted for.

Objectives

Yellowfin tuna (Thunnus albacares) are harvested from across the world's oceans and are widely consumed. Here, we determined geographic variation in the overall mass, concentration, and composition of POPs in yellowfin and examined the differences in levels of several POP congeners of potential relevance to human health.

Methods

We sampled dorsal muscle of 117 yellowfin tuna from 12 locations worldwide, and measured POP levels using combined liquid or gas chromatography and mass spectrometry according to U.S. Environmental Protection Agency standard procedures.

Results

POP levels varied significantly among sites, more than 36-fold on a mass basis. Individual fish levels ranged from 0.16 to 138.29 ng/g wet weight and lipid-normalized concentrations from 0.1 to 12.7 μM. Levels of 10 congeners that interfere with the cellular defense protein P-glycoprotein, termed transporter interfering compounds (TICs), ranged from 0.05 to 35.03 ng/g wet weight and from 0.03 to 3.32 μM in tuna lipid. Levels of TICs, and their individual congeners, were strongly associated with the overall POP load. Risk-based analysis of several carcinogenic POPs indicated that the fish with the highest levels of these potentially harmful compounds were clustered at specific geographic locations.

Conclusions

Capture location is an important consideration when assessing the level and risk of human exposure to POPs through ingestion of wild fish. https://doi.org/10.1289/EHP518.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View