Skip to main content
Open Access Publications from the University of California

A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies.

  • Author(s): Wang, Zigui
  • Chapman, Deborah
  • Morota, Gota
  • Cheng, Hao
  • et al.

Bayesian regression methods that incorporate different mixture priors for marker effects are used in multi-trait genomic prediction. These methods can also be extended to genome-wide association studies (GWAS). In multiple-trait GWAS, incorporating the underlying causal structures among traits is essential for comprehensively understanding the relationship between genotypes and traits of interest. Therefore, we develop a GWAS methodology, SEM-Bayesian alphabet, which, by applying the structural equation model (SEM), can be used to incorporate causal structures into multi-trait Bayesian regression methods. SEM-Bayesian alphabet provides a more comprehensive understanding of the genotype-phenotype mapping than multi-trait GWAS by performing GWAS based on indirect, direct and overall marker effects. The superior performance of SEM-Bayesian alphabet was demonstrated by comparing its GWAS results with other similar multi-trait GWAS methods on real and simulated data. The software tool JWAS offers open-source routines to perform these analyses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View