Skip to main content
eScholarship
Open Access Publications from the University of California

Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones

  • Author(s): Andersen, Martin S.
  • Dahl, Joachim
  • Vandenberghe, Lieven
  • et al.
Abstract

We describe an implementation of nonsymmetric interior-point methods for linear cone programs defined by two types of matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern and its dual cone, the cone of chordal sparse matrices that have a positive semidefinite completion. The implementation takes advantage of fast recursive algorithms for evaluating the function values and derivatives of the logarithmic barrier functions for these cones. We present experimental results of two implementations, one of which is based on an augmented system approach, and a comparison with publicly available interior-point solvers for semidefinite programming.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View