Skip to main content
eScholarship
Open Access Publications from the University of California

Direct detection portals for self-interacting dark matter

  • Author(s): Kaplinghat, M
  • Tulin, S
  • Yu, HB
  • et al.
Abstract

Dark matter self-interactions can affect the small scale structure of the Universe, reducing the central densities of dwarfs and low surface brightness galaxies in accord with observations. From a particle physics point of view, this points toward the existence of a 1-100 MeV particle in the dark sector that mediates self-interactions. Since mediator particles will generically couple to the Standard Model, direct detection experiments provide sensitive probes of self-interacting dark matter. We consider three minimal mechanisms for coupling the dark and visible sectors: photon kinetic mixing, Z boson mass mixing, and the Higgs portal. Self-interacting dark matter motivates a new benchmark paradigm for direct detection via momentum-dependent interactions, and ton-scale experiments will cover astrophysically motivated parameter regimes that are unconstrained by current limits. Direct detection is a complementary avenue to constrain velocity-dependent self-interactions that evade astrophysical bounds from larger scales, such as those from the bullet cluster. © 2014 American Physical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View