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ABSTRACT OF THE DISSERTATION 

 

Improving a Priori Regional Climate Model Estimates  

of Greenland Ice Sheet Surface Mass Loss Through Assimilation of  

Measured Ice Surface Temperatures 

 

by 

 

Mahdi Navari 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2015 

Professor Steven Adam Margulis, Chair 

 

The Greenland ice sheet has been the focus of climate studies due to its considerable impact 

on sea level rise. Accurate estimates of surface mass balance components - including precipitation, 

runoff, and evaporation - over the Greenland ice sheet would contribute to understanding the cause 

of the ice sheet’s recent changes (i.e., increase in melt amount and duration, thickening of ice sheet 

interior, thinning at the ice sheet margins) and help to forecast future changes. Deterministic 

approaches provide a general trend of the surface mass fluxes, but they cannot characterize the 

uncertainty of estimates. The data assimilation method developed in this dissertation aimed to 

optimally merge the satellite-derived ice surface temperature into a snow/ice model while taking 

into account the uncertainty of input variables. Satellite-derived ice surface temperatures were 

used to improve the estimates of the Greenland ice sheet surface mass fluxes.  
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Three studies were conducted on the Greenland ice sheet. The goal of the first study was to 

provide a proof of concept of the proposed methodology. A set of observing system simulation 

experiments was performed to retrieve the true surface mass fluxes of the Greenland ice sheet. The 

data assimilation framework was able to reduce the RMSE of the prior estimates of runoff, 

sublimation/evaporation, surface condensation, and surface mass loss fluxes by 61%, 64%, 76%, 

and 62%, respectively, over the nominal prior estimates from the regional climate model. In the 

second study, satellite-derived ice surface temperatures were assimilated into a snow/ice model. 

The results show that the data assimilation framework was capable of retrieving ice surface 

temperatures with a mean spatial RMSE of 0.3 K which was 69% less than that of the prior 

estimate without conditioning on satellite-derived ice surface measurements. Evaluation of surface 

mass fluxes is a critical part of the study; however, it is limited by the spare amount of independent 

data sets. Several data sets were used to investigate the feasibility of verification of results. It was 

found that predicted melt duration is in agreement with melt duration from passive microwave 

measurements; however, more efforts are needed to further verify the results. In the third study, the 

feasibility of microwave radiance assimilation was investigated by characterizing the error and 

uncertainty in predicted passive microwave brightness temperature from the radiative transfer 

model. We found significant uncertainty between the predicted measurement and satellite-derived 

passive microwave brightness temperature due to error in snow states, coarse resolution of the 

passive microwave and also an imperfect coupled snow/ice and radiative transfer model. Based on 

our findings, radiance assimilation requires more accurate snow grain size parameterization to take 

into account temporal and spatial variability of snow grain size. Furthermore, coarse resolution of 

both passive microwave brightness temperature and snow/ice model and attribute uncertainties of 

both predicted and measured brightness temperature make the radiance assimilation unattractive. 
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This research demonstrates that ice surface temperature measurements have valuable information 

that can be extracted by a data assimilation technique to improve the estimates of the Greenland ice 

sheet surface mass fluxes. 
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1 Introduction 

 

1.1 Background  

Climate change is one of the greatest challenges of recent decades as it directly impacts the 

polar ice sheets and eventually sea level rise. The polar ice sheets hold enough water to raise sea 

level between 70-80 meters (e.g., IPCC, 2001; Schutz, 1998) and Greenland (Figure 1.1) alone 

contains 10 percent of the total land ice volume; which could potentially increase the sea level 

7.2 meters (IPCC, 2001). A recent study showed that the global sea level has risen by an average 

rate of 2.9±0.4 mm/year during 1993 to 2014 (e.g., Watson et al., 2015). Using tide-gauge data 

during 1950 to 2000, Church and White (2006) showed that sea level rise has accelerated since 

1993. Several factors can significantly influence sea level rise including ocean thermal expansion, 

plate tectonics, and most importantly melting of polar ice or high latitude ice caps. The key 

question is how to quantify the contribution of the polar ice sheets to mean global sea level rise. 

Accurate estimates of the polar ice sheets mass balance (MB: the net gain or loss of mass of an 

entire glacier over a certain time period, commonly a year) would begin to address this question 

and determines the contribution of the Greenland Ice sheet (GrIS) and the Antarctica Ice Sheet to 

mean global sea level rise.  

Mass losses through ice dynamics (i.e., ice discharge from outlet glaciers) and surface mass 

balance (SMB: the net mass gain or loss of the ice sheet surface layers during one year) are two 

contributing mechanisms to the GrIS total mass loss. A recent study suggested that the mass loss 

via surface processes (i.e., SMB) accounts for about 70% of the GrIS’s total mass loss (Enderlin 
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et al., 2014). Therefore, accurate estimates of surface mass fluxes could be used as input to net 

mass balance estimates and ultimately a sea level rise projection.  

Early studies on the Greenland SMB components (i.e., precipitation, runoff, evaporation, 

sublimation, and condensation) dates back to early 1900s, during scientific expeditions wherein 

the main focus was on meteorological and geological measurements. Later in the 1990s, 

mathematical models began to play an important role in the GrIS climate studies (e.g. Reeh 

1991). Parallel to modeling efforts, which began in the late 1970s, advances in remote sensing 

technology have significantly improved our understanding of ice sheet processes particularly in 

remote areas such as the Antarctica, Arctic, and Greenland. 

In situ measurements from different sources (e.g., meteorological stations, 

glacio-meteorological expeditions) have provided opportunities to explore, verify, and validate 

models and remotely sensed products as well as retrieval algorithms. However, it should be 

noted that due to extreme climate conditions, darkness during winter time, instability and 

inaccessibility of the GrIS ablation zone, and high cost for installing and maintaining measuring 

stations, in situ measurements are limited and sparse. It is clear that these sparse in situ 

measurements cannot capture the spatial variability of the surface mass fluxes. Regarding this 

inability, surface remote sensing data/products suggest a further possibility to study mass 

balance. 

Surface remote sensing data/products have been widely used to characterize certain aspects 

of the SMB (i.e. melt extent and duration (Tedesco et al., 2013; Hall et al., 2013), and model 
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verification (Fettweis et al., 2005; 2011). Indirect and implicit links between surface remote 

sensing (i.e., passive microwave, visible, and near-infrared) and the SMB terms make 

interpretation of these data difficult. For example, land surface temperature and passive 

microwave measurements can detect the melt signal, but they fail to quantitatively estimate the 

melt flux. Albedo products can detect new snow but cannot quantify snow accumulation. 

Saturation of passive microwave signals due to the presence of water in snowpack makes it 

impossible to diagnose whether water is refreezing or generating runoff. In addition, different 

components of SMB such as evaporation, condensation, sublimation, and runoff cannot be 

directly sensed. In any case, satellite-based observations suffer from uncertainties due to lack of 

perfect retrieval algorithms and the coarse spatial and temporal resolution of many data and 

products and such uncertainties should also be accounted for. 

Using a simple model based on the degree-day method, which estimates the surface melt as 

a function of surface air temperature, was an early attempt to estimate the GrIS SMB using 

numerical models (e.g., Reeh 1991; Braithwaite and Olesen 1990). Developing more 

complicated energy balance models, which take into account the shortwave and longwave 

radiation, turbulent fluxes, and albedo parameterization has provided more reliable estimates of 

surface mass fluxes (e.g., Van de Wal and Oerlemans 1994). The advent of regional climate 

models (RCMs) was a key development in the study of remote areas like Greenland (e.g., 

Lefebre et al., 2003; Fettweis et al, 2005; Ettema et. al., 2009; Bromwich et al., 2001). The 

RCMs are physically-based models that dynamically downscale general circulation models 
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(GCMs) to provide a connection between larger scale models and observations. Modeling 

frameworks provide the ability to estimate the general trend of the surface mass and energy 

balance components over the GrIS. Physically based distributed models provide information 

about physical parameters such as snow grain size (used to estimate albedo), the density of 

snow/ice layers, surface temperature, and snow temperature profiles. These models can be used 

to analyze uncertainties related to states and fluxes based on model input uncertainties and also 

support assimilation techniques. Despite these advantages, fully coupled models still suffer from 

errors related to forcing and initial condition as well as modeling errors, which lead to significant 

uncertainties in the GrIS surface mass fluxes. A comprehensive comparison between the surface 

mass fluxes from different modeling frameworks has been provided in Fettweis (2007). 

Therefore, it is imperative to bring as many relevant data streams to bear on the problem of better 

spatial/temporal characterization of SMB. This dissertation is trying to fill some of these gaps 

and limitations (explained above) with respect to the GrIS SMB by extracting useful information 

from relevant surface remote sensing data streams through a rigorous data assimilation 

technique. 

1.2 Motivation and science questions  

In many of the previous studies, modeling methods, and remote sensing techniques have 

been mostly used individually to characterize the GrIS SMB or some aspect of the SMB. The 

sparseness of in situ data, coarse resolution of most satellite data/products, and considerable 

bias/uncertainty in modeling approaches are the main limitations of deterministic methods 
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causing less reliable estimates of SMB. To overcome the limitations of deterministic approaches 

and improve the ability of mapping, quantifying, and assessing SMB of the GrIS, innovative 

applications that integrate remote sensing measurements and modeling tools are needed. 

Probabilistic approaches, such as data assimilation, can provide a rigorous framework for 

merging different sources of information in a consistent way to obtain an optimal SMB posterior 

estimate. Such an optimal merging can overcome the drawbacks of methods based solely on 

observation or modeling. It is hypothesized that additional information contained in surface 

remote sensing which has not been fully exploited in existing retrieval methods can be mined 

through the data assimilation process. It should be noted that data assimilation has already been 

used in some atmospheric models over the GrIS (e.g. Dee et al., 2011); however, such techniques 

have never been utilized with surface remote sensing datasets to improve the estimates of SMB 

over the GrIS and this is one key aspect of the proposed research. 

The goal of this dissertation was to develop and test a new methodology that is capable of 

assimilating NASA earth observing system (EOS) data into a snow/ice model to improve the 

GrIS SMB estimates, better characterize and reduce the uncertainties and/or correct biases in the 

prior estimates of SMB, and gain a new insight into the SMB processes and their variability. In 

particular, the goal of this research was to evaluate the performance and information content of 

these data/products in the context of data assimilation. The following science questions provide a 

roadmap for the evaluation of the proposed methodology.     

1. Can incorporation of remote sensing measurements overcome errors in the near-surface 
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meteorological forcing variables from a regional climate model? 

2. To what extent do remote sensing data/products provide additional information to improve 

SMB estimates obtained from a regional climate model? And how does the information 

content vary by ice sheet zone (i.e. melt, percolation, and day snow zones)?  

3. Do passive microwave measurements provide additional information that could improve 

SMB estimates? 

The end results would not only prove valuable in addressing the questions described above, 

but should be useful to other scientists who are trying to address the current and future 

projections of sea level rise. The presented dissertation is therefore expected to promote better 

understating of the GrIS surface mass fluxes and underlying surface possesses.   

1.3 Organization of the Dissertation 

In chapter 2, the proposed methodology is evaluated in the context of an observing system 

simulation experiment using one-year synthetically generated ice surface temperature 

measurements with the temporal resolution of the satellite-derived ice surface temperature. In 

chapter 3, the methodology is applied to the satellite-derived ice surface temperature 

measurements to generate reanalysis estimates of the GrIS surface mass fluxes. Chapter 4 is an 

effort to understand and characterize errors and uncertainties associated with passive microwave 

predictions from radiative transfer models which is an important step in radiance assimilation. In 

Chapter 5, the major findings are summarized, and future directions for research are discussed.         
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Figure 1.1 Greenland ice sheet mask and topographic contour  
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2 Feasibility of Improving a Priori Regional Climate Model 

Estimates of Greenland Ice Sheet Surface Mass Loss Through 

Assimilation of Measured Ice Surface Temperatures 

 

2.1 Introduction and Background  

The Greenland ice sheet (GrIS) has recently experienced thinning of the marginal ice (e.g. 

Straneo et al. 2013, Khan et al., 2014), thickening of its interior (e.g. Johannessen et al., 2005; 

Fettweis, 2007), acceleration and increase in ice discharge from many of Greenland’s outlet 

glaciers (e.g. Rignot et al., 2008; Wouters et al., 2013), and enhanced surface melt (e.g. Tedesco 

et al., 2013; Vernon et al., 2013). The melting of the GrIS due to increased temperature has the 

potential to affect deep ocean circulation, and sea level rise (Hanna et al., 2005; Fettweis et al., 

2007; Tedesco 2007, Rahmstorf et al., 2015). Van Angelen et al. (2012) and Fettweis et al. (2013) 

predict that meltwater runoff will be the dominant mass loss process in the future due to the 

retreat of the tidewater glaciers above sea level; a recent study showing that the dynamic mass 

loss was reduced from 58% before 2005 to 32% for the period between 2009 and 2012 (Enderlin 

et al., 2014).  

Many studies (e.g. van de Wal et al., 2012) have taken advantage of in situ measurements to 

provide a direct point-scale estimate of the surface mass balance (SMB, i.e. the difference 

between accumulation and ablation). However, with these limited in situ measurements alone, 
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large-scale mapping of the GrIS surface mass fluxes (i.e. precipitation, evaporation, sublimation, 

condensation, and runoff) is impossible. The availability of remote sensing data and/or products 

has taken GrIS from a remote ‘‘data poor’’ region that is reliant mostly on sparse in situ 

measurements to a potentially ‘‘data rich’’ environment. In this regard, a key research objective is 

to better understand how such data can be optimally leveraged for quantitatively estimating the 

surface mass balance (SMB) and its associated fluxes.  

Surface remote sensing data and products (i.e., surface or skin temperature, multi-frequency 

brightness temperature, and albedo) have been used to characterize various aspects of SMB such 

as snow melt, melt extent, melt duration, new snow, extreme melt events (e.g. Abdalati and 

Steffen, 1995; Tedesco et al., 2011; Box et al., 2012; Hall et al., 2013). However, the relationship 

between surface remote sensing data/products and surface mass fluxes are most often indirect 

and implicit. For example, ice surface temperature can be indicative of melt, but it fails to 

quantitatively estimate the volume of meltwater produced. More importantly, other surface mass 

fluxes such as evaporation, condensation, sublimation, and runoff cannot be directly quantified 

via remote sensing. This makes the possibility of quantitatively characterizing the surface mass 

fluxes from remote sensing retrieval algorithms difficult if not impossible. It can therefore be 

argued that the information content of remotely sensed data remains underutilized due to indirect 

and implicit links between the various data streams and surface mass fluxes.  

Given the limitations of the observation-based methods, numerical models offer an 

alternative mechanism to quantify the GrIS surface mass fluxes. Several model-based approaches 



10 

 

have been used to characterize the spatio-temporal variability of the GrIS surface mass fluxes in 

both historical and future contexts (e.g. Hanna et al., 2011,2013; Box et al., 2006; Fettweis, 2011; 

Ettema et. al., 2009; Lewis and Smith, 2009; Vernon et al. 2013; Franco et al. 2013). Although 

the aforementioned methodologies have provided the ability to estimate the GrIS SMB and 

related fluxes, their estimates vary considerably, mainly due to the different physics 

parameterizations in the models and simplifying assumptions, the inherent uncertainty of each 

method, error in model and input data, and the length of data records (e.g. Rignot et al., 2011; 

Vernon et al., 2013; Smith et al., 2015). Therefore, it is imperative to design techniques that 

bridge the gap between different methods by merging relevant data streams with a physical 

model with the aim of better spatial-temporal characterization of the GrIS surface mass fluxes. In 

this study, we provide an example of taking advantage of information in the relevant data streams 

to provide a better spatial-temporal characterization of the model outputs (i.e., the GrIS surface 

mass fluxes). This can be done using a data assimilation approach which attempts to merge 

model estimates with measurements in an optimal way (Evensen, 2009).” 

2.2 Motivation and science questions  

To date, to the best of the authors’ knowledge, there have been no attempts at merging 

surface remote sensing data with models using a data assimilation (DA) framework to fully 

resolve and quantify estimates of the GrIS surface mass fluxes. Data assimilation techniques 

have been heavily used in hydrology to estimate soil moisture (e.g. Reichle et al., 2002; Margulis 

et al., 2002; Al-Yaari et al., 2014), predict snow water equivalent (SWE) (e.g. Durand et al., 2008; 
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De Lannoy et al., 2012; Girotto et al., 2014a; Zhang et al., 2014), estimate runoff (e,g. Crow and 

Ryn 2009; Franz et al., 2014), improve estimates of radiative fluxes (e.g. Forman and Margulis 

2010; Xu et al., 2011), and characterize snowpack properties and freeze-thaw state of the 

underlying soil (Bateni et al., 2013, 2015). DA so far has been underutilized in applications 

aimed at characterizing GrIS dynamics. Recently, Goldberg and Heimbach (2013), and 

Morlighem et al. (2013) used variational DA methods to characterize the interior and basal 

properties of ice sheets and ice shelves. Larour et al. (2014) assimilated surface altimetry data 

into the reconstructions of transient ice flow dynamics to infer basal friction and surface mass 

balance of the northeast Greenland ice stream. However, the use of DA for estimating GrIS SMB 

terms remains relatively unexplored. Assessing the feasibility of such approaches in providing a 

mechanism for improving quantitative estimates of SMB is the key motivation of this work. 

This study utilizes an observing system simulation experiment (OSSE) framework to assess 

the feasibility of the proposed DA system. The OSSE framework uses synthetically generated ice 

surface temperature (IST) measurements consistent with a “true” realization of SMB evolution. 

This study addresses the following science questions: 1) Can assimilation of IST measurements 

overcome errors and uncertainties in the near-surface meteorological forcing variables for 

snow/ice modelling? 2) Can a DA framework be used to reduce the uncertainty and/or correct 

biases in a priori estimates of surface mass fluxes from a regional climate model?  

This paper is arranged as follows: Sect. 2.3 contains the description of the models and 

methods used in this work. The experimental design is given in Sect. 2.4. The results and 
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evaluation of the proposed methodology are discussed in Sect. 2.5. Finally, key conclusions and 

future research directions are reported in Sect. 2.6. 

2.3 Models and Methods  

2.3.1 Study domain 

The study domain covers the entire GrIS, which is discretized with a grid size of 25 km by 

25 km to match the domain used in the regional atmospheric model described below. The focus 

is on fully snow/ice covered pixels. Figure 2.1 shows the different GrIS mass balance zones 

based on a forward simulation for the year 2010. The ablation zone is defined as the region of the 

GrIS where the annual surface mass balance is negative. The dry snow zone is defined as the 

region where the mean annual temperature is less than -25ºC (Cuffey and Paterson 2010) and 

melt generally does not occur. The area between the ablation zone and the dry snow zone is 

considered the percolation zone where surface meltwater percolates downward into the snow 

layers. It should be noted that the digital elevation model (DEM) over the ice sheet originates 

from a high-resolution map generated by Bamber et al. (2001). The elevation of the ice sheet 

increases from almost zero in the coastal regions up to about 3400 m at the summit. 
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 Figure 2.1 The Greenland ice sheet mask (filled area), including the ablation zone (blue), the percolation zone 

(dark green), and the dry snow zone (bright green) based on an offline CROCUS simulation for the 

year 2010. The contour lines show the topography of the ice sheet with an interval of 500 m. The red 

square show the location of pixel in the ablation zone where used to Figure 2.3 

2.3.2 Data 

Surface temperature plays an important role in the coupled GrIS surface energy and surface 

mass budget. It is the key factor that regulates partitioning of net radiation into the subsurface 

snow/ice, sensible and latent heat fluxes. Surface temperature also influences the generation of 

runoff, the temperature profile evolution, and even basal melt (Hall et al., 2013). Space-borne 
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instruments can provide estimates of IST. The retrieved IST is directly related to snow surface 

emissivity (Hook et al., 2007). The emissivity of the snow surface is a function of grain size and 

liquid water content, which both are under the influence of surface processes (Hall et al., 2009). 

These facts support the idea that clear-sky IST, of all remote sensing products available, may 

contain the most information about physical processes that drive the GrIS accumulation and 

mass loss. Therefore, this work focuses on testing the feasibility of using products such as 

Moderate Resolution Imaging Spectroradiometer (MODIS) IST as an extra source of information 

to enhance the utility of modelling techniques. The possibility of using additional 

remotely-sensed data streams (e.g. passive microwave brightness temperature and albedo) will 

be investigated in future studies.  

The Greenland Ice Surface Temperature product (GrIS IST) is available from the MODIS 

Terra satellite (http://modis-snow-ice.gsfc.nasa.gov/?c=greenland) and provides up to one 

(clear-sky) measurement per day at a native resolution of 1.5 km and an accuracy of ~1º - 1.5ºK 

(Hall et al., 2012). However, cloud contamination and occasional instrument outages play an 

important role in the availability of the MODIS IST measurements. These two factors along with 

some other technical and quality considerations can reduce the availability of the IST 

measurements to less than 10 high quality clear-sky measurements in some months (Hall et al., 

2012). In the context of the OSSE used in this work, synthetic IST was generated based on the 

temporal resolution and acquisition time of the actual GrIS IST product by perturbing the 

modelled surface temperature with assumed measurement error described below. 

http://modis-snow-ice.gsfc.nasa.gov/?c=greenland
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2.3.3 Regional climate model 

The a priori (or prior) estimate used in the DA framework in this study is based on output 

from the regional climate model Modèle Atmosphérique Régional (MAR; Gallée and Schayes 

(1994) and Gallée and Duynkerke (1997)). The version of the model used here (i.e. MARv2) has 

been applied extensively over the GrIS and is described in more detail in previous studies 

(Lefebre et al., 2003; Fettweis et al., 2005). This version has also been used to generate future 

projections for the ICE2SEA European project (Fettweis et al., 2013). For this study, MAR was 

used to generate hourly near-surface meteorological outputs (i.e., temperature, pressure, wind 

speed and direction, longwave and shortwave radiation, precipitation, pressure, humidity, etc.) at 

a horizontal spatial resolution of 25 km to force an offline snow/ice model. The ERA-Interim 

reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) was used 

to initialize the MAR meteorological fields at the beginning of the simulation (1979) and to force 

the atmospheric lateral boundaries as well as the oceanic conditions (surface temperature and sea 

ice extent) every 6 hours over 1979-2010. MAR was not reinitialized every day by the ECMWF 

reanalysis and its results were not recalibrated after the simulation to better compare with 

observations as in other approaches (e.g. Box et al., 2004; Box et al., 2006). The reader is 

referred to Fettweis et al. (2005), Lefebre et al. (2003) and Fettweis et al. (2011) for detailed 

information on the MAR setup used here. 

2.3.4 Surface mass/energy balance and snow physical model 

The key equations related to SMB are the water and energy balance of the near-surface ice 
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sheet. The bulk surface mass balance for each model pixel (i.e., integrated over the top ~10 

meters of the ice sheet) can be written as: 

SMB P E C R              (2.1) 

where P is the surface precipitation, E is the surface evaporation/sublimation, C includes both 

liquid and solid condensation, and R is the meltwater runoff from the snow/icepack. Note that 

refreezing is implicitly included in the runoff term. Evaporation, sublimation, condensation and 

runoff are the key variables that drive the surface mass loss (SML), while precipitation is the key 

meteorological driver for GrIS surface accumulation.  

The temporal evolution of snow temperature in a vertical snow column is constrained by the 

conservation of energy equation, i.e. (Brun et al. 1989): 

2

2

( ) ( )pc T T
q

t z

  
 

 
         (2.2) 

where   is the snow density, 
p

c  is the snow heat capacity, T is the snow temperature at depth 

z and time t, and   is the snow heat conductivity, and q represents a sink (melt) and source 

(refreezing). It is worth noting that Eq. (2.2) is valid for T<273.15K; any energy inputs that 

would raise the temperature beyond freezing instead contribute directly to melt. Equation (2.2) is 

subject to the surface energy balance as a boundary condition, which is the key driver of the 

snowpack energy budget: 

(1 )s l l n SH LH GR R R R Q Q Q               (2.3) 

where 
sR
  is the downward shortwave radiation,   is the (broadband) snow albedo, 

lR
  and 

lR
 are the downward and upward longwave radiation all terms are positive values. nR is the net 
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radiation that is partitioned among the surface sensible ( SHQ ), latent ( LHQ ), and surface ( GQ ) 

heat fluxes (into the snow). SHQ  and LHQ  are positive when directed toward the atmosphere 

and GQ  is positive when directed toward the snow/ice surface. The sensible/latent heat fluxes 

represent the turbulent heat/vapor exchange between the surface and overlaying air due to the 

temperature/water vapor gradient between the surface and the reference-level (i.e. meteorological 

forcing variables). The ground heat flux is driven by the temperature difference between the 

surface temperature and subsurface layers, and hence can have a significant impact on the 

ice/snow melt and runoff. Based on Eq. (2.3),
sR
 ,

lR
 , , and air temperature, specific humidity, 

and wind speed (embedded in SHQ  and LHQ ) are the key meteorological variables controlling 

the downward energy into the snowpack ( GQ ), which ultimately contributes to runoff (R). 

The above coupled surface mass/energy balance represented by the CROCUS snow physical 

model was used in this study to provide a prior estimate of the GrIS surface mass fluxes that is 

consistent with the nominal forcings provided by MAR. CROCUS is a 1D energy balance model 

consisting of a thermodynamic module, a water balance module taking into account the 

refreezing of meltwater, a turbulent module, a snow metamorphism module, a snow/ice 

discretization module and an integrated surface albedo module. CROCUS computes albedo and 

absorbed energy in each layer for three spectral bands (i.e. visible, and two near infrared bands).  

CROCUS derives the turbulent sensible and latent heat fluxes using a bulk method (Brun et al., 

1989), which applies Monin-Obukhov similarity theory to estimate turbulent fluxes using the 

near-surface wind speed and the temperature and humidity differences between the surface and 
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the temperature at ~3 m, prescribed by MAR. CROCUS uses the bulk Richardson number to 

adapt the fluxes for stable and unstable atmospheric conditions, respectively. Note that a similar 

approach has been used by Van den Broeke et al., (2009). The capability of the model to partition 

the incident solar radiation between the layers allows melt occurs on multiple depths. In 

CROCUS each snow layer in the snow column is treated as a reservoir with a maximum water 

holding capacity of 5% of the pore volume. When the liquid water content (LWC) exceeds the 

threshold, excess water moves toward the layer below and the process continues until the water 

reaches the bottom layer and generates runoff. In addition, CROCUS takes into account changes 

in LWC due to snow melt, refreezing, and evaporation during a model time step. The physics of 

CROCUS and its validation are detailed in Brun et al. (1989, 1992).  

Assimilation of data into an RCM is another option for attempting to improve RCM fields 

(such as precipitation, for example), but beyond the scope of this work. The focus of this work is 

improving of surface mass fluxes using RCM outputs and assimilation of a surface remote 

sensing data stream. Furthermore, the use of a fully coupled MAR-CROCUS system to generate 

an a priori ensemble estimate would be computationally prohibitive. To reduce the computational 

burden, an offline version of CROCUS was implemented (i.e., MAR was run over the whole 

modelling period, and then MAR outputs were used to force CROCUS over the same period). 

One can think of the DA framework outlined below as providing an update to an initial (prior) 

estimate of the surface mass fluxes from MAR (or any other regional climate model) using IST 

data as an additional constraint. 
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Of particular relevance to this study is the connection between CROCUS states and the 

measured variables used in the DA (i.e. IST). Surface temperature (synthetic IST) is an output of 

the forward model (CROCUS), therefore, it can directly be used as a prediction of the 

measurement in the DA system. One key aspect is that the raw measurements are available at 

higher spatial resolution than the model state (i.e. 1.5 km vs. 25 km). This was handled via an 

assumed change in the measurement error due to aggregation as described in more detail below. 

2.3.5 Model adaptation 

The CROCUS snow/ice model was originally developed for operational avalanche 

forecasting. Therefore, the model must be modified for SMB ice sheet applications. Following 

Fettweis (2006), the bottom boundary condition was modified for simulating approximately the 

top 10 meters of the ice sheets. In this context, this represents the “surface” mass and energy 

balance via the vertically integrated states and fluxes within these top layers of the ice sheet. This 

method consists of the following rules: First, if during the model integration the sum of the snow 

and ice layer heights becomes less than 8 m, the bottom layer is extended for two meters. Second, 

in the case that the sum of the snow and ice layer heights becomes larger than 15 m, the bottom 

layer is divided by two. This is consistent with the methodology used in nominal MAR 

simulations.              

2.3.6 Ensemble Batch Smoother (EnBS) Framework 

The EnBS is a technique that conditions a prior estimate of model states on measurements 

taken over an assimilation window to generate a posterior reanalysis estimate rather than a 
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real-time (or sequential) estimate (Girotto et al., 2014a; Bateni et al., 2013, 2015). In the context 

of this paper, the assimilation window is a full annual cycle and measurements consist of IST 

data over this period. Using the generated forcing fields from MAR, the CROCUS model was 

run forward in time to provide an ensemble of a priori estimates of snow/ice state variables (e.g. 

surface temperature, snow/ice layer temperature, density, grain size, etc.) and different surface 

mass fluxes (e.g. evaporation, sublimation, runoff, etc.). The propagation of the CROCUS model 

forward in time can be shown in state-space form as: 

( ) ( ( ), ( ), )
j j j j

t f ty y u          (2.4) 

where ( )
j

ty  is the vector of states for the jth realization at time t, (.)f  represents the 

CROCUS model operator, ( )
j
y  is the vector of states at previous times ( ), ( )

j
tu  is the 

forcing fields for realization j, and 
j

  is the model parameter vector for replicate j. 

Conventionally, the generated snow/ice states and surface mass fluxes by the forward 

propagation of CROCUS are called the open-loop (prior) estimates. Note that ( 0)
j
 y  

represents the initial snow profile (IC: initial condition).   

The main source of uncertainty in a priori snow/ice states and surface mass fluxes is 

hypothesized to be most likely due to errors in the meteorological forcings ( ( )
j

tu , see Eq. 2.4) 

generated by a parent model (in this case MAR): incoming shortwave and longwave radiation, 

air temperature (
aT , which is implicit in the latent and sensible heat fluxes), precipitation, wind 

speed, relative humidity, and cloudiness. Herein, our focus is on the sub-set of key forcings that 

are the postulated main drivers of SMB (i.e., P, 
lR , 

sR , and 
aT ). It is hypothesized that the a 
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priori uncertainty in forcings can be modeled via:  

,( , ) ( ) ( , )j P j MARx t x x tP P         (2.5a)   

, , ,( , ) ( ) ( , )s j S j s MARx t x x t
 R R         (2.5b) 

, , ,( , ) ( ) ( , )l j l j l MARx t x x t
 R R         (2.5c) 

, , ,( , ) ( ) ( , )a j T j a MARx t x x tT T         (2.5d) 

where ( , )MAR x tP , 
, ( , )s MAR x t


R , 
, ( , )l MAR x t


R , and 
, ( , )a MAR x tT  are the nominal near-surface 

meteorological outputs from MAR, 
, ( )P j x , 

, ( )S j x , 
, ( )l j x , and 

, ( )T j x  are 

lognormally-distributed multiplicative coefficients designed to capture uncertainty in the forcing 

inputs. The subscript j represents an individual ensemble member sampled from the postulated 

uncertainty distribution (j = 1,…, eN , where eN  represents the ensemble size) and x shows the 

spatial index (i.e., implicitly represents an individual computational pixel in the domain). It 

should be noted that, a multiplicative lognormal perturbation model (e.g. Margulis et al., 2002; 

Andreadis and Lettenmaier, 2006; Forman and Margulis, 2010, etc.) was used since all forcing 

(i.e., P, 
lR , 

sR , and 
aT [ºK]) are positive quantities and it provides a simple mechanism for 

capturing the expected uncertainty in the inputs. This type of perturbation model characterizes 

the ensemble using the first two moments (i.e., mean and coefficient of variation (CV)) (Forman 

and Margulis 2010). In this study, the mean, CV, and cross correlation between the forcing 

variables was obtained using the reported values in De Lannoy et al. (2010, 2012). All of the 

parameters for each forcing are shown in Table 2.1.  
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Table 2.1 Postulated parameters (Coefficient of variation (CV) and cross-correlation) for multiplicative 

perturbations to hourly meteorological forcing inputs (the units for each forcing are: P in mm/hour, 

sR and 
lR  in W/m

2
 and 

aT  in K). 

Perturbation  CV Cross correlation 

  P 
sR  

lR  
aT  

Precipitation (P) 0.5 1.0 -0.1 0.5 -0.1 

Shortwave (
sR ) 0.2 -0.1 1.0 -0.3 0.3 

Longwave (
lR ) 0.1 0.5 -0.3 1.0 0.6 

Air temperature (
aT ) 0.005 -0.1 0.3 0.6 1.0 

Traditional DA applications are posed as state estimation problems where the vector of state 

variables (i.e., snow temperature, density, grain size, depth, etc.) is estimated via conditioning on 

measurements. In the current application, this can become prohibitive since the state vector 

dimension is extremely large (i.e., each snow state profile involves 50 layers with several states 

per pixel and several thousand pixels over the domain). More importantly, updated states do not 

provide quantitative information about surface mass fluxes. Hence, here we took a different 

approach. Rather than estimating the states directly, we treated the multiplicative coefficients 

,i j
 in Eq. (2.5) as the ‘states’ to be estimated. In other words, the multiplicative coefficients have 

been used to transfer the nominal MAR forcing into probabilistic space (i.e. prior and posterior 

forcings). The DA algorithm uses IST measurements to condition the probability density function 

(pdf) of the prior multiplicative coefficients to compute the posterior pdf of the multiplicative 

coefficients. This strategy, which was also used specifically for precipitation in Durand et al. 

(2008) and Girotto et al. (2014a), is in direct recognition of the fact that the primary source of 

uncertainty in surface mass fluxes is due to error in the near-surface meteorological forcing 
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inputs. The added benefit of this approach is that the size of the state vector is significantly 

reduced even in the case of time variant multiplicative states. Such a strategy derives a posterior 

estimate of the forcing variables directly (via the updated 
,i j

 ), and consequently allows for 

improved estimates of the surface mass fluxes via a posterior integration of CROCUS (with the 

posterior forcing inputs). The DA system theoretically allows the multiplicative states to vary on 

any arbitrary time scale. However, for simplicity, we implemented time-invariant perturbations 

(i.e., assumed 
,i j

  were unchanged over the annual modelling period) herein. In this way the 

update to the states was designed to allow for biases and/or low-frequency errors in individual 

realizations in the prior multiplicative states.     

It would be ideal to characterize the uncertainties for all inputs from the information content 

in the assimilated data stream(s). However, in many cases available measurements are not 

relevant to some sources of uncertainty in the models. For instance, in this study, IST is less 

likely to have information about precipitation because there is no expected meaningful 

correlation between precipitation and IST. With regard to the fact that precipitation cannot be 

updated using the IST data the focus of this work has involved constraining the GrIS surface 

mass loss (SML) components (i.e., sublimation/evaporation, condensation, and runoff), while 

still including the expected uncertainty in the accumulation term (precipitation). In other words, 

all forcing inputs were perturbed to take into account their respective postulated uncertainties, 

but only longwave, shortwave and surface air temperature coefficients were updated as part of 

the assimilation system.     
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In the update step, the EnBS merges IST measurements with prior multiplicative states in 

order to generate a posterior estimate of those multiplicative states. In this study, we used an 

EnBS, which was implemented in a batch mode over a pre-defined window (i.e., applied over 

one year) with a single update. This feature of the EnBS (i.e., the batch mode update) allows 

running MAR and CROCUS in an offline mode that could be applied to the historical record. 

The open-loop (prior) estimate of the variables of interest (i.e., S , l , and T ) were collected 

into the state matrix 
 . Similarly, the vector of synthetically generated IST measurements was 

assembled into a vector: 

measurement true
 T T v           (2.6) 

where v  is the assumed additive white Gaussian error and true
T  is the synthetic truth (see Sect. 

2.4.1). Finally, each ensemble member was updated individually via a Kalman-type update 

equation (Durand and Margulis, 2008; Bateni et al., 2013, 2015), 

,[ ]
j j measurement j predicted j

    K T V T      (2.7)   

where 
j

  and 
j

  represent the jth ensemble member before and after the update, respectively, 

predicted
T is the matrix of predicted measurements consisting of predicted IST. V is the 

measurement error that was synthetically produced and added to the measurements in order to 

avoid correlation among the replicates (Burgers et al. 1998), and K is the Kalman gain matrix 

which is given by  

1[ ]
T TT V


 K C C C          (2.8) 

where V
C  is the error covariance of the measurements, 

TC is the cross-covariance between the 
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prior states and predicted measurements, and 
TTC  is the covariance of the predicted 

measurements. In this framework, the state variables are related to the measurements in the batch 

through the covariance matrices that are obtained from the ensemble.  

The update in Eq. (2.7) can be seen as a projection of measurement-prediction misfits onto 

the states. The updated (posterior) multiplicative states were used in Eq. (2.5) to retrieve updated 

(posterior) forcing. The posterior forcings and initial snow profile (I.C.) were used as inputs in 

CROCUS to estimate the posterior surface mass fluxes. The proposed methodology can simply 

be extended to multiple years by applying the DA sequentially and independently for each year 

(e.g. Girotto et al., 2014b) or via applying the DA to a moving window (e.g. Dunne et al., 2005). 

A schematic illustration of the methodology is presented in Figure 2.2. The proposed 

methodology can be thought of as a post-processing (reanalysis) of MAR estimates by 

constraining the model using independent IST observations. 
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Figure 2.2 Schematic illustration of the proposed methodology. The posterior SMB/SML is effectively a 

post-processing (reanalysis) of regional climate model (in this case MAR) estimates conditioned on 

IST measurements. 

2.4 Experimental Design 

An OSSE or synthetic twin experiment offers a controlled setting in which the true forcing 

variables (i.e., S , l , and T ) are available. The goal of an OSSE is to evaluate the feasibility 

of the new methodology prior to assimilating real space-borne measurements. In an OSSE, a 

synthetic true state and corresponding noisy measurements of the system are generated and used 

to evaluate the feasibility of the DA framework (e.g. Durand and Margulis, 2006; Crow and Ryu, 

2009; De Lannoy et al., 2010). 
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2.4.1 True selection 

The synthetic truth uses realistic input and measurement error characteristics in conjunction 

with the forward models to generate a realistic realization of the true system. In this study, the 

synthetic truth was selected as an outlier (defined below) from the generated ensemble due to the 

fact that errors in forcings can yield differences between a forward model (open-loop) estimate 

and the true surface mass fluxes.  

In the OSSE system, traditionally the synthetic true ensemble is chosen from state space 

trajectory of the forward model (e.g., Crow and Van Loon, 2006; Durand and Margulis, 2006; 

Bateni et al., 2013). While an alternative approach could involve choosing the synthetic truth 

from the trajectory space of another well developed RCM model, running multiple RCM models 

to generate a synthetic truth is prohibitive. 

The ensemble of forcing data was generated via Eq. (2.5) for the year 2010 and then the 

offline CROCUS implementation was run using the ensemble of forcing data to generate 

estimates of the GrIS surface mass fluxes in 2010. The year 2010 was chosen, at least in part, 

since it was characterized by an extreme melt rate (Tedesco et al., 2011). Considering the fact 

that runoff is the main component of the GrIS surface mass loss, the true ensemble (synthetic 

truth) was selected in a way that the integrated true runoff over the GrIS was an outlier relative to 

the median of the ensemble simulations. The forcing variables, states, and fluxes corresponding 

to the synthetic truth were also considered as the true forcings, the true states and the true fluxes 

respectively. It should be highlighted that in a synthetic DA experiment, any generated 
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realization from the forward model (CROCUS) can be used as the synthetic truth, but one that is 

significantly different from the prior mean/median allows for a more robust assessment of the 

value of the assimilated measurements. In other words, in an OSSE the goal is to assess whether 

a DA framework can replicate the randomly selected true by merging the measurements with the 

prior (open-loop) estimates. It has been shown that (see Section 2.5.3) the proposed data 

assimilation algorithm is insensitive to the selected truth (i.e. runoff) and is capable of retrieving 

the true states and fluxes for different runoff scenarios. 

2.4.2 Assimilated measurement characteristics 

Surface temperature from the forward model can be considered as a close approximation of 

the remotely-sensed IST. Here, the synthetic DA experiments were designed to mimic reality as 

much as possible. Hence, the DA system was run with a realistic representation of the temporal 

frequency of real space-borne IST measurements; e.g. the GrIS IST measurements from MODIS 

have a daily temporal resolution. However, in many instances daily observations are not 

available due to cloud contamination, instrument outage, and quality related considerations. To 

take this issue into account, the number of available daily IST measurements (i.e., synthetic 

measurements) for assimilation in each month was derived from the spatial average seen in the 

actual Greenland IST product (e.g., Hall et al., 2012). The days with measurements were selected 

randomly so that the total number per month was consistent with the real number of available 

measurements.  

Since the raw MODIS IST measurements are available at a much finer spatial resolution (i.e. 
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~1.5 km) than the model scale (25 km), the measurements themselves and their error 

characteristics would require a pre-processing spatial aggregation to match the resolution of 

computational pixels (~25 km). In the context of the OSSE in this study, the synthetic 

measurements and forward model both have the same spatial resolution therefore there is no 

need for spatial aggregation of the predicted measurement. However, specification of realistic 

measurement errors need to take into account the difference in spatial resolution between 

MODIS IST measurements and the model pixel scale. Measurement errors for MODIS IST at its 

raw resolution (i.e. 1.5 km) are expected to be ~1º -1.5ºK (e.g. Hall et al., 2012). Hence the 

measurement errors at the model scale (25 km) are expected to be less than or equal to this value 

depending on the level of correlation of the measurement errors at the sub-pixel scale. In the case 

of perfectly uncorrelated sub-pixel measurement errors, the aggregated measurement would be 

expected to have a measurement error equal to the fine-scale value divided by the number of 

sub-grid MODIS pixels. Assuming uncorrelated sub-grid errors are likely overly optimistic, we 

postulated that the measurement error standard deviation of IST at the 25 km scale is 1K. 

2.4.3 Implementation 

The feasibility of the new DA system was evaluated via assimilation of IST as follows: A 

synthetically generated data stream was assimilated within an EnBS framework to assess the 

information content of the IST and explore whether it can overcome errors in forcing inputs. This 

was examined by comparing the open-loop and EnBS estimates of multiplicative states with the 

synthetic truth. Thereafter, the posterior meteorological forcings were fed into CROCUS to 
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estimate the surface mass fluxes. The performance of the EnBS algorithm was further evaluated 

through the comparison of the posterior estimates with the prior estimates and the true estimate 

for all surface mass fluxes. It is worth noting that in the OSSE in this study the ensemble size 

was set to 100 replicates which has been shown to be adequate in previous relevant studies (e.g. 

Margulis et al., 2002; Huang et al., 2008; Evensen 2009). 

 

2.5 Results 

2.5.1 Performance of the EnBS via Assimilation of IST 

To provide an illustrative example of the methodology, Figure 2.3a-c shows the distribution 

of prior (open-loop) and posterior (obtained by assimilating IST) multiplicative state variables 

corresponding to the different forcings for a sample pixel (the red square in Figure 2.1) in the 

ablation zone (latitude 67ºN longitude 49.8ºW), which is the critical zone in terms of the GrIS 

surface mass loss. The prior distribution of multiplicative coefficients for each forcing variable is 

wide, representing the postulated uncertainty in the prior forcings. In contrast, Figure 2.3a shows 

that the histogram of the posterior estimates of T  is tightly distributed around the true estimate. 

A narrow distribution around the true estimate means that the DA system uses the information 

contained in the IST sequence and moves the ensemble members toward the true estimate while 

reducing the uncertainty of T . The reduction in uncertainty is evident by comparing the base of 

the posterior histogram with that from the prior estimates. The positive update by the DA system 

can be explained based on the fact that IST and air temperature are coupled and each one affects 
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the other (Hall et al., 2008). Figure 2.3b illustrates that the median of the posterior estimate of l  

agrees well with the corresponding synthetic truth. Incoming longwave radiation is correlated 

with the effective (near-surface) air temperature and as stated above, IST and surface air 

temperature are closely tied to each other. Prior to melt, solar radiation goes into heating the 

snow/ice surface and during the melt period, energy input drives sublimation or evaporation and 

melt (Box and Steffen 2001). Therefore, it can be stated that IST is positively correlated with the 

incoming shortwave radiation. The EnBS system takes advantage of this correlation and provides 

improved estimates of the multiplicative state related to shortwave radiation (Figure 2.3c). 

Figure 2.3d presents the time series of the IST for the prior, posterior, synthetic true, and 

assimilated measurements during a portion of the assimilation window. For the purpose of 

illustration, IST data for 10 days during the dry period (January) and beginning of the melt 

period (April) were selected to show the ability of the algorithm to estimate the true IST (Figure 

2.3d and Figure 2.3e). It is evident in Figure 2.3d-e that the EnBS captures the diurnal variability 

of IST and closely estimates the true IST both during the daytimes and nighttimes during the dry 

and melt periods. Moreover, Figure 2.3d shows that the EnBS successfully estimates the true IST 

even when the temporal resolution of the IST measurements significantly decreases. This is 

important since the IST record shows that there are fewer measurements available during the 

months of December and January (Hall et al., 2012) where in some years the available 

measurements during these two months drop to fewer than 10 measurements per month. 

Comparing Figure 2.3d with Figure 2.3e also shows that during the month of January when there 
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are fewer IST measurements the posterior estimates are in good agreement with the true IST, 

however, the uncertainty of the estimates is slightly larger. These results illustrate that 

information from IST measurements can be exploited to estimate the multiplicative states (i.e. 

S , l , and T ) and consequently the IST. 

Results for the whole domain are presented in terms of relevant bulk metrics that capture the 

integrated impact of the forcings. Specifically, the pixel-wise cumulative incoming shortwave 

and incoming longwave radiation (in MJ/m2/year) were used to represent the total energy input 

into the ice sheet and provide insight into the surface energy balance of the GrIS. For the air 

temperature, negative degree-day temperature (NDD) (i.e., cumulative mean daily air 

temperature for days in which the mean daily air temperature is below 0°C) and the positive 

degree-day temperature (PDD) (i.e., cumulative mean daily air temperature for days in which the 

mean daily air temperature is above 0°C) are two other metrics which are indicative of snow 

accumulation and melt periods, respectively. These bulk metrics were used to evaluate the 

performance of the DA algorithm over the entire ice sheet using RMSE and an improvement 

metric.  
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Figure 2.3 Ensemble histogram of the prior (red bars) and the posterior (after assimilation of IST) 

multiplicative states (blue bars) for (a) surface air temperature, (b) longwave radiation, (c) shortwave 

radiation for a sample pixel in the ablation zone. The prior (red line) and posterior (blue line) median 

values and truth (black line) are also shown for reference. The time series of: (d) the IST for the 10-day 

period during the dry season and (e) the IST for the 10-day period during the melt season. The red and 

blue shaded areas represent the prior and posterior uncertainty band (interquartile range) and the 

red, blue, and black lines represent the median of the prior, the median of the posterior and the truth, 

respectively. The green circles represent the synthetically generated (noisy) IST measurements that 

are assimilated to generate the posterior estimates. 

The spatial mean bias and the spatial RMSE of the prior and posterior estimates of the 

integrated forcing variables over the GrIS were computed using the prior, posterior, and true 

cumulative longwave, shortwave, and air temperature (i.e., PDD and NDD). Table 2.2 
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summarizes the spatial mean bias and the spatial RMSE of the different forcing variables. As can 

be seen for the entire simulation period, the mean bias (RMSE) of cumulative shortwave, 

longwave, PDD, and NDD are, respectively, 84% (70%), 82% (85%), 94% (71%), and 65% 

(86%) less than the mean bias (RMSE) of the prior estimates.   

Table 2.2 The spatial mean bias, the spatial RMSE, and improvement metric  for the prior and posterior 

estimates of the forcing variables via assimilation of IST over the entire GrIS.  

 
sR  [MJ/m2/yr] 

lR  [MJ/m2/yr] PDD [ºC-day] NDD [ºC-day] 

Prior Bias -82.0 -25.6 -16.7 -8.0 

Posterior Bias -12.8 +4.6 -1.0 -2.8 

Prior RMSE 791.6 549.1 33.3 394.6 

Posterior RMSE 241.3 97.9 9.7 55.4 

  452.2 375.0 13.8 257.0 

 

An alternative method to evaluate the DA system is to determine the contribution of RS data 

to the estimate explicitly. Following Durand et al. (2006) and Bateni et al. (2013) an 

improvement metric based on the prior and posterior error relative to the true was defined as 

follows:  

 ( ) ( )True True

i i i i iY Y Y Y              (2.9) 

where the ( )iY   and ( )iY   represent the cumulative ensemble median of the prior and 

posterior estimates of the forcing i respectively and True

iY  is the cumulative synthetic true for 

the forcing i. The improvement metric i  can be used to interpret the contribution of the IST 

measurements to the posterior estimates of the forcing. This formulation suggests a value greater 
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than 0 when the posterior error is less than the prior error (i.e., measurement improves the 

posterior estimates), a value equal to 0 when the prior and posterior errors are equal, and a value 

less than 0 when the error in the posterior estimates is greater than that in the prior estimates (the 

measurement degrades the posterior estimates). Table 2.2 shows that IST measurements make a 

large contribution to correct the forcing variables. IST contributed an integrated sum of 452 

(MJ/m2/year), 375 (MJ/m2/year), 14 (ºC-day), and 257 (ºC-day) to correct the shortwave, 

longwave, PPD, and NDD. The improvement metric of the PDD is much smaller than that of the 

NDD due the fact that there are many fewer days in which the mean daily near-surface air 

temperature is above the freezing point.   

In order to further investigate the performance of the EnBS, the prior errors (i.e., prior - true) 

and the posterior errors (i.e., posterior - true) were computed for each forcing variable. Figure 

2.4a-d shows the histograms of the prior and posterior errors for cumulative
sR ,

lR , PDD, and 

NDD over the spatial domain. The EnBS reduces the uncertainty of the posterior estimates for all 

forcing variables and effectively removes any of the prior biases. Therefore, using the improved 

surface energy terms to force CROCUS improves vertically integrated melt energy and enhances 

the estimates of the states and fluxes over the vertical snow/ice column. 
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Figure 2.4 The histogram of the prior errors (red) and posterior (after assimilation of IST) errors (blue) for 

cumulative (a) shortwave radiation, (b) longwave radiation, (c) PDD, and (d) NDD over the full GrIS. 

2.5.2 Updating the SML terms 

While updating the forcing variables is the mechanism by which the EnBS transfers 

information from IST into the posterior estimates, the main objective of the DA framework in 

this study is to assess the feasibility of providing better estimates of the GrIS SML and related 

fluxes using the improved forcings. To generate a benchmark for our analysis, CROCUS was run 

in open-loop mode using the prior forcings (explained above). The SML terms obtained from the 

prior (open-loop) simulation constitute a basis for evaluation of the methodology implemented in 
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this study. Using the posterior forcing, CROCUS was executed for each grid cell to obtain 

posterior estimates of surface mass fluxes (i.e., runoff, sublimation /evaporation, and 

condensation) and consequently SML.   

Runoff plays an important role in the GrIS net mass loss and is the main component of the 

GrIS SML. The GrIS meltwater runoff is heavily concentrated in the ablation zone along the ice 

sheet margin where the width of the ablation zone in the GrIS in some regions is very narrow and 

does not exceed tens of kilometres. The map of synthetic true runoff (Figure 2.5a) shows that the 

west and southwest margins experience the highest rates of runoff that exceeds 6 m water 

equivalent per year. It is worth remembering that the true runoff is an outlier in the context of 

ensemble modelling as explained previously. Figure 2.5b-c shows the runoff anomaly for the 

prior (i.e. prior-true) and the runoff anomaly for the posterior (i.e. posterior-true) respectively. 

The gray areas represent the percolation and dry snow zones, which do not generally contribute 

to surface runoff during the simulation period. It should be noted that in this area the snowmelt is 

not necessarily zero but refreezing can inhibit runoff. The prior anomaly map (Figure 2.5b) 

shows that the open-loop simulation consistently underestimates the true runoff across the 

domain with a strong negative anomaly in the southwest margin (more than 1600 mm water 

equivalent below the true). Comparing the GrIS margin pixels in the prior and posterior maps 

(Figure 2.5b-c) shows that the anomaly of the posterior estimates is significantly lower than that 

of the prior estimates. Reduced anomalies indicate that the EnBS successfully recovers the true 

estimates of the runoff in most pixels. However, the posterior results are not perfect and the 
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algorithm slightly underestimates and overestimates runoff in some pixels.  

 

 Figure 2.5 The (a) synthetic true runoff (mmWE/yr) for the year 2010, (b) runoff anomaly (mmWE/yr) for the 

prior (i.e., difference between the prior and true runoff), (c) runoff anomaly (mmWE/yr) for the 

posterior, (d) scatter plot of the prior runoff estimates, e) scatter plot of the posterior runoff estimates. 

Black dots are the ensemble median of the estimates and the error bars represent the corresponding 

ensemble interquartile range of the estimates. 

Scatter plots of the runoff for the prior and posterior estimates versus the true estimates are 

illustrated in Figure 2.5d-e. Each data point in Figure 2.5d-e represents the ensemble median of 

the estimate (i.e., prior, posterior) versus the true estimate in a single pixel; and the error bar 

illustrates the corresponding ensemble interquartile range of the estimates in the same pixel. The 
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scatter plot of the prior runoff shows that almost all data points lie below the 1:1 line, indicating 

that the prior estimates were significantly biased (by construct in this OSSE). The posterior 

scatter plot (Figure 2.5e) displays that the data points are narrowly distributed around the 1:1 line 

and the error bars are much smaller than that in the prior estimates, implying that the proposed 

algorithm significantly removes the bias and decreases the uncertainty of the estimates.  

Sublimation and evaporation play an important role in the GrIS surface mass loss. However, 

it should be noted that MAR and CROCUS estimate surface sublimation which is considerably 

smaller than drifting snow sublimation. Lenaerts et al. (2012) reported for the period 1960-2011 

on average surface sublimation is responsible for 40% of total sublimation and drifting snow 

sublimation is responsible for another 60%. Here, the discussion focuses on sublimation rather 

than evaporation due to the fact that sublimation is one order of magnitude larger than 

evaporation. The map of synthetic true sublimation (Figure 2.6a) shows that the west and 

southwest of the GrIS in the ablation zone experience the largest sublimation rates. Box and 

Steffen (2001) explained that at the edge of the ice sheet, where slopes become steeper, the 

katabatic wind accelerates and tends to increase sublimation. Furthermore, the net radiation 

increases during the summertime, especially at lower latitudes, which in turn generates a vertical 

temperature gradient and increases the sublimation. Higher energy input also contributes to a 

positive albedo feedback (e.g. Tedesco et al. 2011) and further increases the sublimation rates. 

The prior anomaly map (Figure 2.6b) illustrates that the open-loop model underestimates the 

sublimation at the ice sheet margin and slightly overestimates it in the ice sheet interior. The 
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results demonstrate that posterior sublimation estimates from the assimilation of IST are much 

closer to the truth than are the prior estimates (Figure 2.6c). Comparing the scatter plots of the 

posterior versus the true estimates with that of the prior versus the true estimates, reveals that the 

methodology successfully overcomes the bias and significantly reduces the uncertainty of the 

sublimation estimates and increases the confidence of the results (see Figure 2.6d-e).   

 

 Figure 2.6 The same as Figure 2.5 but for sublimation and evaporation. 

Surface solid condensation (deposition) also influences surface mass fluxes of the GrIS by 

adding mass to the ice sheet. Similar to sublimation, wind and the vertical specific humidity 
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gradient are two key factors that control the deposition. To be more precise, colder temperatures 

and lower winds enhance the deposition rates. In contrast with sublimation, deposition occurs at 

night and during winter, mainly due to radiative cooling (Box and Steffen 2001).  

 

Figure 2.7 The same as Figure 2.5 but for surface solid condensation (SSC).  

Figure 2.7a shows that the surface solid condensation (SSC) is greater in the ice sheet 

interior where winds are weak and there is sufficient moisture in the air column. The high 

elevation central regions, however, show less condensation due to distance from moisture 

sources. High speed winds in the ice sheet margins prevent condensation despite the availability 
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of moisture. Figure 2.7b shows that the prior estimates for SSC is not in good agreement with the 

truth and that the prior simulation both underestimates and overestimates surface solid 

condensation across the domain. A comparison between the prior and posterior anomaly maps 

(Figure 2.7b-c) suggests that the posterior estimates closely recover the true estimates. Figure 

2.7e shows that the data points are clustered around the 1:1 line; indicating that the EnBS 

corrects the bias in the prior estimates (Figure 2.7d). In addition, posterior error bars are 

significantly smaller than that of the prior error bars, indicating that the EnBS effectively uses 

the information content of the IST measurements to eliminate the bias and reduce the 

uncertainties of the posterior estimates. 

Herein, the SML is defined as the sum of the mass loss terms (i.e. runoff and 

sublimation/evaporation) and mass gain term (i.e. surface solid condensation) discussed above. 

Figure 2.8a shows that SML is greater in the west and southwest of the ice sheet where runoff is 

the dominant mass loss mechanism and is smaller in the ice sheet interior where mass loss 

mainly occurs through sublimation. Similar to runoff, the prior anomaly is largely concentrated 

in the ablation zone and since runoff is roughly two orders of magnitude larger than sublimation 

and condensation, the anomaly due to these two fluxes is almost undetectable in the anomaly 

map (see Figure 2.8b). Comparing the posterior anomaly map (Figure 2.8c) with that of the prior, 

clearly shows that the posterior SML is closely matched with the true estimates across the 

domain. Scatter plots (Figure 2.8d-e) also confirm that the EnBS effectively removes the bias 

and increases the confidence level of SML estimates.  
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 Figure 2.8 The same as Figure 2.5 but for the GrIS surface mass loss (SML). 

To provide an integrated picture over the full domain, Figure 2.9a-d shows the time series of 

the cumulative runoff, sublimation, surface solid condensation, and SML over the GrIS 

respectively in 2010. As illustrated in Figure 2.9a, the true runoff starts in late April and increases 

rapidly during the melt season (to a cumulative value of 408 mm) until late August. The central 

tendency of the prior simulation (as indicated by the ensemble median) underestimates the runoff 
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by about 35% owing to errors in the forcing inputs. The posterior estimates show a cumulative 

runoff of 394 mm over the GrIS, which is in good agreement with the truth. Table 2.3 shows that 

the EnBS reduces the spatial mean bias (RMSE) of the prior estimates of runoff by 90% (61%) 

from -552 mm (646 mm) to -54 mm (250 mm). Note that runoff occurs in the ablation zone 

therefore the spatial mean bias and spatial RMSE for runoff were computed over the ablation 

zone. The spatial mean bias and spatial RMSE for sublimation, condensation, and SML were 

computed over the entire ice sheet. As evident in Figure 2.9b, sublimation accelerates during the 

summer season owing to increased energy input to the snow/ice surface. The true estimate 

suggests that in total net sublimation (i.e. sublimation and evaporation) accounts for about 66 

mm (~15%) mass loss over the GrIS. The median of the prior simulation shows a total 

sublimation loss of ~56 mm which is 10 mm less than the truth. The EnBS significantly 

improves the results where the posterior median estimate shows a total sublimation of 65 mm. 

From Table 2.3 the spatial mean bias (RMSE) of the posterior estimate shows a 90% (64%) 

reduction relative to the prior. In general surface solid condensation accelerates during the winter 

and decelerates in the summer season (Figure 2.9c). The true simulation suggests a cumulative 

SCC of 27 mm, and the median of the prior and posterior estimates are 25 and 27 mm, 

respectively. The 76% reduction of the spatial RMSE of the posterior estimates and 80% 

reduction of the spatial mean bias (Table 2.3) also supports the accuracy of the posterior 

estimates. Finally, the true SML estimate is 450 mm, the prior and posterior median of SML are 

295, 435 mm, respectively. Clearly the posterior SML estimate is in better agreement with the 
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truth. The IST measurements contribute an integrated sum of 140 mm to correct the posterior 

estimates of the GrIS SML and also reduce the spatial mean bias and the spatial RMSE of the 

estimates by 90% and 62% respectively (Table 2.3). 

 

Figure 2.9 The time series of: (a) cumulative runoff, (b) cumulative sublimation and evaporation, (c) 

cumulative surface solid condensation, and (d) cumulative mass loss over the GrIS (in millimetres of 

water equivalent). The truth is the black dashed line, the prior ensemble median is the red line and the 

posterior ensemble median is the blue line. The red shaded area corresponds to the ensemble 

interquartile range (IQR) for the prior simulation and the blue shaded area corresponds to the 

ensemble IQR for the posterior estimates. 

A probabilistic approach also provides information about the uncertainty of the estimates. 

Figure 2.9a-d show that the prior estimates of all surface mass fluxes have a large ensemble 

spread, reflecting the propagation of a priori forcing uncertainties to SML terms. During the 

update process the EnBS significantly reduces the uncertainties of the posterior estimates of 
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forcing variables and consequently the posterior estimates of the surface mass fluxes. Comparing 

the narrow blue shaded area with the wide red shaded area illustrates that the EnBS increases the 

confidence of the model predictions by decreasing the error and uncertainties of the posterior 

estimates relative to the prior estimates. 

Table 2.3 The spatial mean bias and the spatial RMSE of runoff, sublimation/evaporation, surface solid 

condensation, and net mass loss estimates via assimilation of IST measurements. The spatial mean 

bias and the spatial RMSE for runoff were computed over the ablation zone and for the other surface 

mass fluxes were computed over the entire ice sheet.     

 
Runoff 

[mmWE] 

Sublimation 

[mmWE] 

SSC 

[mmWE] 

Surface mass loss 

[mmWE] 

Prior Bias -551.6 -3.1 -0.5 -38.9 

Posterior Bias -54.0 -0.3 -0.1 -3.8 

Prior RMSE 646.1 14.7 4.6 174.1 

Posterior RMSE 249.8 5.3 1.1 66.9 

 

2.5.3 Sensitivity to the synthetic truth values 

As in any OSSE, the synthetic measurements are, by construct, a function of the chosen true 

and therefore the posterior results could be impacted by the particular selection of the true 

realization. To address this concern, and show the robustness of the proposed algorithm, the 

simulation was repeated for two different true values; one smaller than the baseline simulation 

and the other larger. In the first case the synthetic true runoff was set to 330 mm, which is the 

average of the runoff estimates from the open-loop simulation (i.e. ~260 mm) and the true runoff 

from the baseline simulation (i.e., ~400 mm). In the second case the true runoff was set to 470 
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mm, which is 70 mm larger than the baseline simulation. Table 2.4 shows the RMSE of the 

surface mass fluxes for all simulation cases. The posterior RMSE of each mass flux for all 

simulation cases are very similar even when the prior RMSE of the estimates are significantly 

different. For example, the prior RMSE of the runoff (SML) for the second simulation case (true 

runoff equal to 470 mm) is 2.5 (2.6) times larger than the prior RMSE of the first simulation case 

(true runoff equal to 330 mm), but the posterior RMSE differs by only 4% (10%). Therefore, it 

can be stated that the DA algorithm robustly retrieve the true estimates of the surface mass fluxes 

and the performance of the algorithm is relatively insensitive to the selected truth. 

Table 2.4 The spatial RMSE of runoff, sublimation/evaporation, surface solid condensation, and net mass loss 

estimates via assimilation of IST measurements for three different true values.   

True Runoff 

[mm] 
 

Runoff 

[mm] 

Sublimation 

[mm] 

SSC 

[mm] 

Surface mass loss 

[mm] 

330 Prior 348.9 13.4 4.7 92.8 

 Posterior 249.2 4.8 1.1 63.6 

400 (baseline) Prior 646.1 14.7 4.6 174.1 

 Posterior 249.8 5.3 1.1 66.9 

470 Prior 894.4 16.0 4.6 245.1 

 Posterior 259.4 5.2 1.1 70.7 

 

2.6 Discussion and conclusions 

A new data assimilation methodology for improving estimates of the GrIS surface mass loss 

fluxes has been tested and presented using an observing system simulation experiment 

framework. The prior estimates were derived from an offline surface module (CROCUS) forced 
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by an ensemble of meteorological forcing fields that were based on a nominal regional climate 

model simulation (in this case MAR). A posterior estimate was generated by conditioning the 

forcings on the synthetically generated IST measurements using an ensemble batch smoother 

(EnBS) approach. Specifically, it was shown that using the EnBS with IST measurements was 

able to improve nominal estimates derived from MAR that result from erroneous forcing fields 

that drive surface mass and energy balance processes. The results illustrated that IST 

measurements have potential information on shortwave, longwave, and surface air temperature 

that allows for correction of errors in these terms. However, due to the lack of meaningful 

correlation between precipitation and IST measurements, the precipitation flux was not updated 

in this context (i.e. the prior and posterior precipitation is the same). Hence the assimilation of 

IST is primarily beneficial for estimating the surface mass loss terms and not the accumulation 

term. However, it should be noted that, using MAR-CROCUS to generate the synthetic truth 

might lead to optimistic results since the truth is taken from the same model. Mitigation of this 

was attempted by using an outlier for the truth. An expensive alternative, but worth pursuing in 

future work, would be to use other RCM models to generate the synthetic truth. That said, it can 

be argued that using another model such as RACMO2 (Ettema et al., 2009) to generate the true 

realization will not significantly affect the results because the synthetic truth from RACMO2 is 

likely to fall within the ensemble spread of MAR-CROCUS trajectory. The main reasons for that 

are (1) the SMB fluxes from MAR and RACMO2 are highly correlated (Fettweis et al., 2013), (2) 

the trends of SMB fluxes from two models are very similar Vernon et al., (2013). Furthermore, 
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sensitivity analysis shows that the proposed algorithm is able to retrieve the synthetic truth for 

the extreme cases where the real true stats fall beyond the chosen values. 

The new methodology has several advantages over the traditional state-space data 

assimilation approaches. First, in this new application the multiplicative perturbation variables 

are considered as states to be updated. Reduction of the size of the state vector and consequently 

computational costs is the direct outcome of this approach. Second, mass loss terms cannot 

directly be sensed by the means of satellite sensors; using this methodology, the mass loss fluxes 

were estimated indirectly by reducing the error in forcing variables. Finally, the modularity of the 

proposed methodology would allow for incorporation of any regional climate model and 

additional remotely-sensed observations in future applications. All of these advantages should 

make such data assimilation approaches an attractive and complementary approach to better 

resolve and diagnose the ice sheet surface mass fluxes. The improved mass loss estimates could 

also be used as input to net mass balance estimates and ultimately a sea level rise projection 

when applied to real data over the remote sensing record.  

As a final note, it should be emphasized that the application presented in this study does not 

attempt to optimize or include uncertainty in any model parameters. Rather, the focus is on the 

uncertainty of time-varying model forcing inputs, which is expected to be the primary source of 

uncertainty in estimates of surface melt. We acknowledge that the model parameters are treated 

as certain and therefore, any uncertainty/error in model parameters (e.g., water holding capacity 

that impacts the transformation of meltwater into runoff) would increase the expected error in 
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posterior SML in an application with real data. A more general case where estimation of 

parameters is included in the data assimilation framework could be the basis of future work.  

The next logical step is to apply the methodology with real IST measurements to further 

validate the robustness of the proposed approach. This future work will include the use of the 

MODIS IST product for estimating GrIS SML. The data assimilation framework is general and 

could also include the potential application of assimilation of passive microwave, albedo, and 

even Gravity Recovery and Climate Experiment (GRACE) data to further constrain GrIS SMB 

estimates. 
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3 Characterization of the Greenland Ice Sheet Surface Mass 

Balance Via Assimilation of Ice Surface Temperature into the 

CROCUS Snow Ice Model  

 

3.1 Introduction and Background  

Climate change due to human activities is one of the greatest challenges of recent decades as 

it directly impacts the polar ice sheets and eventually sea level rise. As reported by Jansen et al. 

(2007), Arctic regions are currently facing increasingly warmer climate (warmer than at any time 

in the last 125000 years), which has raised concern about the possibility of significant polar ice 

melt. Major changes in the Greenland ice sheet (GrIS) as a part of the polar regions have already 

been studied and reported over the last decade including 1) significant thinning of the marginal 

ice (Krabill et al., 2004; Pritchard et al., 2009; Straneo et al., 2013; Khan et al., 2014), 2) glaciers 

acceleration and increase in ice discharge from many of Greenland outlet glaciers (Rignot 2010; 

Wouters et al., 2013; Enderlin et al., 2014); 3) significant surface melt (Tedecso et al., 2013; 

Fettweis et al., 2013; Nghiem et al., 2012; Hall et al., 2013; Vernon et al., 2013); and a 

thickening of the ice sheet in the Greenland interior (Thomas et al., 2006).  

The GrIS is losing mass through ice discharge from outlet glaciers and surface processes 

(e.g. meltwater runoff, sublimation, and evaporation). Enderlin et al., (2014) shows that 

contribution of ice discharge to the total GrIS mass loss has been reduced from 58% during 

2000-2005 to 36% during 2005-2009 and 32% between 2009 and 2012.  
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Despite the importance of mass loss through surface processes, fundamental questions 

remain unanswered including: How much does GrIS lose mass through the surface process? 

What is the temporal variability of the surface fluxes and how they change over the course of the 

year? What is the spatial variability of surface mass fluxes and how do the different regions of 

the GrIS respond to changes in atmospheric forcing? What are corresponding uncertainties of the 

GrIS surface mass fluxes? Lack of measurements in combination with insufficient 

parameterization of the GrIS surface processes are the primary reasons for large uncertainty in 

surface mass loss estimates (e.g., Smith et al., 2015; Alexander et al., 2014).        

Limited and sparse in situ measurements such as the Greenland climate network (GC-Net: 

Steffen and Box, 2001), K-transect measurements (van de Wal et al., 2012), and data from ice 

core projects have been used to verify and validate models, remotely sensed data/products, and 

retrieval algorithms (e.g. Fettweis et al., 2005; Burgess et al., 2010). However, it is obvious that 

spatially continuous estimates of fluxes cannot be obtained by applying interpolation techniques 

to these sparse data sets. Taking into account the shortcoming of in situ measurements, surface 

remote sensing suggests a further possibility to study SMB.   

Surface remote sensing (RS) data contain indirect and implicit information about GrIS 

surface processes with relatively high spatial and temporal resolutions. These data have been 

mostly used to estimate the melt extent and melt duration over the GrIS (e.g. Abdalati and 

Steffen, 1995; Tedesco et al., 2013; Hall et al., 2013). Theoretically, satellite-based visible and 

near infrared (Vis/NIR) data contain information on surface temperature, the solar energy 
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absorbed by the snowpack, and snow phase (wet/dry) but this information has not been fully 

exploited due to indirect and implicit links between these data/products and the SMB terms. 

Given the limitations of the above mentioned observation-based methods, spatially and 

temporally continuous estimates of surface mass loss fluxes generally require physically based 

numerical modeling. These tools offer a significant advantage as they can provide spatially and 

temporally distributed estimates; however, error and uncertainty in the forcings and initial 

conditions directly propagate into the estimate of mass loss fluxes. While there is significant 

ongoing research focusing on these methods individually, there are some efforts (e.g. Larour et al. 

2014; Navari et al., 2015) to take advantages of both models and remotely sensed measurements 

through the merging of these two data streams to construct reanalysis estimates of surface mass 

loss fluxes. In this approach, measurement can optimally merge with a model using data 

assimilation techniques, which have been proven to be a more robust alternative to deterministic 

modeling approach (e.g., Girotto et al., 2014).     

The complexities of the ice sheet surface dynamics and nonlinearities of underlying surface 

mass loss mechanisms have introduced considerable uncertainties into the surface mass fluxes 

from different methodologies. Our previous work (Navari et al., 2015) has shown that a data 

assimilation methodology can overcome uncertainties associated with surface mass fluxes from a 

regional climate model via assimilation of ice surface temperature (IST). This work is a 

continuation of the previous study on which the feasibility of the methodology was examined 

using an observing system simulation experiment (OSSE). Here, satellite-derived IST is used to 
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condition a priori snow/ice model estimates to generate reanalysis estimates of the GrIS surface 

mass fluxes and associated spatiotemporal variability. We are trying to answer: How much does 

the GrIS lose mass through the surface process? How are these results comparable with 

open-loop simulation? What is the temporal and spatial variability of the surface fluxes? In 

Section 3.2 we briefly introduce models and the methodology used in this study. Section 3.3 

describes the study areas and data sets. In Section 3.4 the experimental design is described and 

assimilation results are presented in Section 3.5. Assessment and verification of the results are 

presented in Section 3.6 and conclusions and future work are discussed in Section 3.7.           

3.2 Method, and models  

3.2.1 Regional climate model 

In the data assimilation framework in this study the regional climate model Modèle 

Atmosphérique Régional (MAR; Gallée and Schayes (1994) and Gallée and Duynkerke (1997)) 

was used to generate hourly near-surface meteorological outputs (i.e., temperature, pressure, 

wind speed and direction, longwave and shortwave radiation, precipitation, pressure, humidity, 

etc.) for the years 2009 and 2010 at a horizontal spatial resolution of 25 km to force an offline 

snow/ice model (i.e. forward model). MAR has been recently selected as the official SMB model 

for the ICE2SEA European project aiming at quantifying the potential contribution of the ice 

sheets to sea level rise. We emphasize that MAR is fully coupled with the snow physical model 

CROCUS (Brun et al., 1992) described below. The reader is referred to Lefebre et al. (2003, 

2005) and Fettweis et al. (2005) for detailed information on the MAR setup used here.  
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3.2.2 Surface mass/energy balance and snow physical model 

The forward model used in this study is the surface mass/energy balance snow physical 

model CROCUS (Brun et al. 1989, 1992). CROCUS is a one dimensional, multi-layered energy 

balance model consisting of a thermodynamic module, a water balance module taking into 

account the refreezing of meltwater, a turbulence module, a snow metamorphism module, a 

snow/ice discretization module and an integrated surface albedo module. CROCUS was run in 

ensemble mode using an ensemble of meteorological forcing data including precipitation, 

shortwave, longwave, air temperature, wind speed, relative humidity, and cloudiness to generate 

an ensemble of prior estimates of the surface states and fluxes. The implementation of CROCUS 

in the data assimilation framework is explained in Navari et al. (2015).  

3.2.3 Model adaptation 

3.2.3.1 Boundary condition  

The CROCUS snow/ice model was originally developed for operational avalanche 

forecasting. Therefore, the model has been modified for SMB ice sheet applications. Following 

Fettweis (2006), the bottom boundary condition was modified for simulating the top ~10 m of 

the ice sheets. This method consists of the following rules. First, if during the model integration 

the sum of the snow and ice layer thicknesses becomes less than 8 m, the modeled bottom layer 

is extended by two meters. Second, in the case that the sum of the snow and ice layer thicknesses 

becomes larger than 15 m, the bottom layer is divided by two. This is consistent with the 

methodology used in nominal MAR simulations. 
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3.2.3.2 Albedo parameterization  

The CROCUS albedo parameterization has been described in Brun et al (1992). The 

CROCUS snow albedo depends on snow density and optical grain diameter; though density does 

not directly affect the albedo but has a direct impact on grain size. More importantly, CROCUS 

uses density to differentiate between snow and ice layers. The optical grain diameter is a function 

of sphericity, dendricity, and grain size (Brun et al 1992). CROCUS computes snow albedo for 

three spectral ranges including the visible range (0.3-0.8μm), and two near infrared ranges (i.e. 

0.8-1.5μm and 1.5-2.8 μm) as follows:  

1 min [ 0.94 , 0.96 1.58   ] 0.2 (0.3 0.8 m)
60

age
d        (3.1) 

2 0.95 15.4*  (0.8 1.5 m)d       (3.2) 

 
3 346.3  32.31 0.88 (1.5 2.8 m)

min ,0.0023

d d

d d

 



  




   (3.3) 

where age is the snow age in days, and d is the optical grain diameter in m. MAR uses a modified 

and upgraded version of the CROCUS snow and ice albedo as described in Lefebre et al. (2003). 

Here the CROCUS albedo parameterization was updated using MAR albedo parameterization. 

CROCUS takes into account the snow impurities by correcting the visible band snow albedo via 

adding an aging factor (i.e. visible albedo decreases as the snow surface ages). Although, the GrIS 

snow/ice impurity is an open area of research, the impurity term in CROCUS was calibrated to 

take into account the dry deposition (vegetation dust) from the forest close to the CROCUS test 

site in Col de Porte, France, which is not relevant to our application over the GrIS. Following 
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Dumont et al., (2014), the impurity term (i.e., the term 0.2
60

age
) was removed from the visible 

band albedo. Removing the effect of impurities makes the CROCUS albedo more consistent with 

the MAR albedo scheme, and the visible band snow albedo becomes solely a function of the 

optical grain diameter (d). However, the visible band snow albedo is still slightly different from the 

MAR equation. MAR uses the maximum function instead of the minimum function in Eq. (3.1) 

which mean the visible snow albedo is always larger than 0.94. This is more likely a bug in the 

equation which needs to be fixed. Here, the CROCUS equation was preferred to the MAR equation 

since it better represents the visible snow albedo. For the first near infrared range, no modification 

was applied since the both MAR and CROCUS have an identical equation (i.e. Eq. (3.2)). For the 

second near infrared range MAR and CROCUS use slightly different equations; here the 

CROCUS equation was preferred to the MAR equation since the MAR equation results in 

unrealistic albedo for the optical grain diameter (d) greater than 0.0028 m which can frequently be 

seen in the MAR output during the melt period (especially in the ablation zone). In addition, 

similar to the MAR albedo scheme, the lower limit of the snow albedo was set to 0.65 for all 

spectral ranges.  

Over the bare ice, CROCUS uses constant values of 0.45, 0.3, and 0.1 for the 

above-mentioned three spectral ranges, respectively. The spectral albedo for the bare ice surface 

is replaced with that from MAR. MAR uses a fixed value of 0.45 for bare ice albedo in all 

spectral ranges. In CROCUS a layer is considered as a snow layer if the layer density is less than 

850 kg/m3; following MAR the ice threshold was reduced from 850 kg/m3 to 800 kg/m3. Using 
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the snow/ice threshold causes a discontinuity in the time series of albedo. To ensure a smooth 

transition around the threshold value, the MAR transition equation was used as follows: 

3

3

917
(0.65 )

800 917
snow

ice bare ice bare ice

kgm

kgm

  




 
     

     (3.4) 

where ice
  is the ice albedo for the cases where the density of layer is between 800-917 kg/m3, 

bare ice
 is the bare ice albedo, and snow

  is the layer density.  

MAR also uses a transition albedo if the thickness of the snow layers above the ice or 

compact snow (layer with a density larger than the snow threshold of 800 kg/m3) becomes less 

than 10 cm. This transition is simply an interpolation between the snow albedo and ice albedo 

(Eq. (3.4)) which is applied to all spectral albedo terms as follows: 

( ) 0.1
0.1

0.1

snow
i ice i ice snow

i i snow

H
for H m

for H m

   

 

       
 

  

       (3.5)  

where i
  is the spectral snow albedo, snow

H is the snowpack thickness above the ice layer. It 

should be noted that MAR v2.0 has been used in this study and the albedo parameterization has 

been slightly modified in MAR v3.2. In MAR v3.2, the bare ice albedo is a function of meltwater 

production and ranges between 0.45 to 0.55. The snow and ice threshold has also been increased 

from 800 kg/m3 to 830 kg/m3. A complete description of MAR v3.2 albedo scheme can be found in 

Alexander et al., (2014). It also should be highlighted that both the MAR and CROCUS albedo 

modules have been designed to simulate pure snow and ice albedo while studies over the GrIS 

show that impurities play an important role in surface melt through the albedo feedback. This can 

be an important source of error in SMB estimates using MAR and CROCUS.          
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3.2.4 Melt extent and melt duration from passive microwave  

In this study, melt extent and melt duration diagnosed from passive microwave 

measurements have been used to attempt to verify the assimilation results. Hence, this section 

briefly summarizes the method has been implemented to retrieve melt extent and melt duration 

from passive microwave brightness temperature. Melt extent and melt duration have been 

extensively investigated using remote sensing data from different satellite imagery such as 

passive microwave data (e.g. Abdalati and Steffen 1995, 1997; Fettweis et al 2006, 2011; 

Tedesco 2007) and ice surface temperature data (e.g. Hall et al., 2013). The Cross Polarization 

Gradient Ratio (XPGR) and the Diurnal Amplitude Variation (DAV) are the two well-known 

algorithms which can be used to estimate the melt extent and melt duration. The XPGR uses the 

normalized difference between the 19 GHz H-pol and the 37 GHz V-pol (Abdalati and Steffen 

1995), and the DAV (Ramage and Isacks, 2002) uses the difference between brightness 

temperature at ascending and descending passes of the 19 GHz H-pol or the 37 GHz V-pol. 

The DAV algorithm was preferred to the XPGR because finding the melt thresholds for 

passive microwave from the Advanced Microwave Scanning Radiometer - Earth Observing 

System AMSR-E does not require field experiments. In addition, the DAV is very sensitive to the 

daily melt cycle (Tedesco, 2007) and it can also detect the liquid water under the frozen surface 

layer during the nighttime. Following Tedesco (2007) two criteria were used to detect the melt 

onset and wet snow including a) brightness temperature at 37GHz V-pol becomes larger than a 

fixed threshold (A), and b) the difference between the ascending and descending passes at 37 
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GHz V-pol becomes larger than another fixed threshold B (i.e. 

( )ascending descending

b b
DAV abs T T B   ). During the melt season melt might persist during the night 

(sustained melt), which means the DVA will be very small; to account for this condition it was 

assumed that snow is melting when both the ascending and descending values are larger than the 

threshold A.  

Apgar et al., (2007) reported a brightness temperature threshold (A) of 252 K and a DAV 

threshold (B) of ±18 K to detect the presence of wet snow in the sub-arctic region using 

AMSR-E data. Tedesco (2007) applied a brightness temperature threshold of 258 and a DAV 

threshold of ±18 K to the 37 GHz V-pol Special Sensor Microwave Imager (SSM/I) data to study 

the melt over the GrIS. Monahan et al., (2010) used AMSR-E data with a brightness temperature 

threshold of 252 K and a DAV threshold of ±18 K to study melt pattern of the southern Patagonia 

ice field.    

Ramage and Isacks, (2003) suggested a method to compute the brightness temperature 

threshold (A) using the histogram of the measured brightness temperature. The histogram of 

brightness temperature shows a bimodal distribution if the snow melts during the melt season. 

The population in the left side of the histogram represents the frozen snow and the population in 

the right side represents the melting snow. They suggested the lowest population between the two 

peaks to be considered as a threshold between the dry and wet snow.  

3.2.5  Reanalysis Method (Ensemble Batch Smoother algorithm) 

Data assimilation is a general term for an algorithm that systematically merges the 
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measurements and models assuming both contain useful information about the states of the 

system while both models and measurements contain errors. Data assimilation techniques have a 

well-established history in hydrology (e.g. Reichle et al., 2002; De Lannoy et al., 2012; Girotto 

et al., 2014a; Bateni et al., 2013, 2015; Margulis et al., 2015). For comprehensive details, the 

reader is referred to these references.  

In this work, an EnBS framework is implemented to merge satellite-derived IST with prior 

states (i.e. prior multiplicative states) to generate posterior states. The key aspects of the method 

are described below. Unlike commonly used filtering method in which states are sequentially 

updated when a measurement becomes available, EnBS updates the states in a single step using 

all measurements in the assimilation window (i.e. one year). In this way, the EnBS removes the 

overall bias and better fit the true states while there still might be some degree of disagreement 

between the true states and the EnBS results.    

Many studies (e.g. Rignot et al., 2011; Vernon et al., 2013; Smith et al., 2015) have shown 

that error and uncertainty in model input variables are an important source of uncertainty in 

surface mass fluxes from different deterministic approaches. The data assimilation techniques 

can overcome uncertainty in forcing variables and consequently provide better estimates of states 

and fluxes (e.g. Durand et al. 2008; Girotto et al., 2014a,b; and Navari et al., 2015).  

In this study, a multiplicative lognormal perturbation model (e.g., Forman and Margulis 

2010) was used to incorporate expected uncertainty to the key forcing variables (i.e., 

precipitation (P), longwave (
lR ), shortwave (

sR ), and air temperature (
aT ) [K]) using the mean 
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and coefficient of variation. The prior uncertainty in forcing variables can be modeled via:  

,( , ) ( ). ( , )j F j MARF x t x F x t          (3.6)   

where ( , )jF x t  is perturbed forcing variable (i.e. ( , )jP x t , 
, ( , )s jR x t
 , 

, ( , )l jR x t
 , and , ( , )a jT x t ) 

with postulated uncertainty, and ( , )MARF x t is the nominal near-surface meteorological output from 

regional climate model (i.e. ( , )MARP x t , 
, ( , )s MARR x t
 , 

, ( , )l MARR x t
 , and , ( , )a MART x t ), , ( )F j x is 

lognormally-distributed multiplicative coefficients designed to capture uncertainty in the forcing 

inputs. The subscript F represents different forcing (i.e., P, 
lR , 

sR , and 
aT ), and j represents an 

individual ensemble member sampled from the postulated uncertainty distribution (j = 1,…, eN , 

where eN  represents the ensemble size) and x shows the spatial index (i.e., implicitly represents 

an individual computational pixel in the domain).  

Finding the uncertainty structure of near-surface meteorological data over the GrIS is very 

difficult since there are very limited measurements. Here, for simplicity, we chose to use 

literature reported coefficient of variation (CV) and cross correlations between the variables to 

perturb the meteorological forcings. Following De Lannoy et al., (2010, 2012) precipitation was 

perturbed using multiplicative coefficients with mean=1 and CV=0.5, downward shortwave was 

perturbed using multiplicative coefficients with mean=1 and CV=0.2, downward longwave and 

surface air temperature were subject to multiplicative perturbation with mean=1 and CV=0.1 (Rl) 

and CV=0.005 (Ta) respectively. To impose the cross correlation between the forcing variables 

following values were used (LW–SW:-0.3, SW–P:-0.1, SW–Ta: 0.3, LW–P: 0.5, LW–Ta: 0.6, 
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P–Ta: -0.1). Note that the key point is to achieve a reasonable level of uncertainty that represent 

the realistic uncertainty of the forcing variables.           

Updating the state variables does not provide quantitative information about surface mass 

fluxes. Hence, the forcing variables were treated as states to be updated. This means that the 

prior pdf of forcing variables was conditioned on the measurements to obtain the posterior pdf of 

the forcing variables. This strategy, was also reported specifically for precipitation in Durand et 

al. (2008); Girotto et al. (2014a,b); and for longwave, shortwave, and air temperature in Navari et 

al., (2015). The updated forcing variables (via the updated ,i j
 ), can then be used to obtain an 

improved posterior estimate of the surface mass fluxes. It has been shown in Navari et al., (2015) 

that precipitation, the main component of SMB, can’t be robustly updated using IST due to the 

fact that there is no meaningful correlation between IST and precipitation. Consequently, the 

study was adopted to estimate the GrIS surface mass loss (SML), which to a large degree is 

independent of precipitation. In order to take into account the indirect effects of precipitation on 

SML through the albedo and precipitation energy flux, we chose to perturb the precipitation 

instead of using the nominal precipitation from MAR. However, we emphasize that only the 

GrIS SML components (i.e., sublimation/evaporation, condensation, and runoff) were 

constrained while still including the expected uncertainty in the accumulation term 

(precipitation). While the data assimilation framework updates the SML components, 

precipitation kept unchanged.    

In the update step, the EnBS provides estimates of uncertain ,i j
  parameters as a means for 
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improving prior estimates of surface mass fluxes through conditioning on IST measurements. 

The open-loop (prior) estimate of the variables of interest (i.e., S , l , and T ) were collected 

into the state matrix 
 . Similarly, the vector of satellite-derived ice surface temperature (IST) 

measurements was assembled into a vector: 

( )
measurement IST

T f T             (3.7) 

where IST
T  is the IST measurement, and f is an aggregation operator which transfers the IST 

data into the model space. The EnBS individually updates each ensemble member via a 

Kalman-type update equation (e.g., Durand and Margulis, 2008; Navari et al., 2015), 

,[ ]
j j measurement j predicted j

K T V T
             (3.8) 

where 
j

  and 
j

  represent the jth ensemble member before and after the update, respectively, 

measurement
T  is satellite-derived IST, predicted

T is the matrix of predicted measurements consisting of 

the predicted GrIS surface temperature generated by the integration of forward model using the 

prior forcing variables. V is the additive Gaussian measurement error that was synthetically 

produced and added to the measurements in order to avoid correlation among the replicates 

(Burgers et al. 1998), and K is the Kalman gain matrix, which is computed from the sample 

covariances. In this framework, the state variables relate to the measurements in the batch through 

the covariance matrices that are obtained from the ensemble. A posterior simulation was 

performed using the posterior estimates of ,i j
  in the forward model to generate reanalysis time 

series of the surface mass fluxes.    
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3.3 Study Site and Data 

3.3.1 Study site  

In this study, the focus is on fully covered snow/ice pixels of the GrIS. Based on MAR mask 

the study domain consists of 2817 pixels of 25 km by 25 km with an area of 6 21.76  10 km . 

Figure 3.1 shows the different GrIS mass balance zones based on a forward simulation for the 

year 2010 and topographic contour lines. Three distinct mass balance zones over the GrIS 

includes: 1) The ablation zone: the region of the GrIS where the annual surface mass balance is 

negative. 2) The dry snow zone: the region where the mean annual temperature is less than -25ºC 

(Cuffey and Paterson 2010) and melt generally does not occur. 3) The percolation zone: the area 

between the ablation zone and the dry snow zone where surface meltwater percolates downward 

into the snow layers and is separated from the ablation zone by the equilibrium line. 

3.3.2 Data 

3.3.2.1 Ice surface temperature data   

The EnBS framework conditions the prior meteorological forcing on satellite-derived IST 

measurements. The satellite-derived data used in reanalysis estimate proposed in this work is a 

mixed data set which was generated by combing the two IST products.  
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Figure 3.1: The Greenland ice sheet mask (filled area), including the ablation zone (blue), the percolation zone 

(dark green), and the dry snow zone (bright green) based on an offline CROCUS simulation for the 

year 2010. The contour lines show the topography of the ice sheet with an interval of 500 m. 

The first data set (Figure 3.2a) is the MOD29 IST product of Greenland available online at 

(http://modis-snow-ice.gsfc.nasa.gov/?c=greenland). This product was developed based on 

Terra-MODIS clear-sky swath data obtained at 17:00 ± 3:00 UTC (14:00 ± 3:00) local time using 

the algorithm developed by Key and Haefliger (1992) and Key et al. (1997) for the MODIS sea 

ice product (i.e. MOD29 and MYD29). The MOD29 IST product uses data from Aqua-MODIS 

to fill the gaps due to instrument outages. An intensive automated and manual cloud correction 

http://modis-snow-ice.gsfc.nasa.gov/?c=greenland
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process has been employed to the data set to obtain high-quality clear sky IST. The daily MOD29 

IST data set has been stored in a polar stereographic grid at 1.5 by 1.5 km and is available in 

binary and GeoTIFF format from Jan. 2000 to Dec. 2014. The reader is referred to Hall et al. 

(2012, 2013) for detailed information on the product. This product is a unique high-quality daily 

ice surface temperature data set which makes it suitable for data assimilation processes over the 

GrIS. However, the major drawback of using this data set is that there is no accurate acquisition 

time and data have been acquired from different satellite overpass within ± 3 hours of 17:00 

UTC. Furthermore, Hall et al., (2012) reported a cold bias of ~3 K using short period in situ 

measurements at the Summit station.  

 

Figure 3.2 Ice surface temperature over the GrIS on May 15, 2009 (a) the first data set obtained at 17:00 ± 3:00 

UTC, (b) the second data set obtained at 17:00 ± 1:00 UTC   
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The second data set (Figure 3.2b) is similar to the first data set, but it was developed based 

on Terra-MODIS clear-sky swaths data obtained at 17:00 ± 1:00 UTC which has been generated 

specifically for this study at NASA Goddard Space Flight Center (Hall, personal communication). 

This data set contains a more accurate acquisition time because it just uses swaths within ±1 hour 

of 17:00 UTC. One drawback, however, is that there are less high quality clear-sky daily 

observations within ±1 hour than ±3 hour. In addition, Terra orbit tracks over the GrIS at 17:00 ± 

1:00 UTC distributed over the northern part of the GrIS (between ~80ºN-85ºN) which means the 

Terra-MODIS sensor at this time windows does not cover the southern part of the GrIS in many 

overpasses (Figure 3.2b). Therefore, significant information in the southern part of the GrIS 

where most of the melt happens is missing in the second data set. The two data sets were 

carefully combined to obtain the maximum number of measurements with relatively accurate 

measurement time. For each day the IST 17:00 ± 1:00 UTC data was used as the main data set 

and then the missing data (the areas of the southern part of the GrIS that has been cut off in the 

IST 17:00±1:00 data) was replaced with that of data from IST 17:00±3:00 data.  

To estimate an approximate acquisition time for the measurements obtained from the first 

data set (i.e. data within ± 3 hours of 17:00 UTC) the Terra orbit tracks data (available at 

https:;//www.ssec.wisc.edu/datacenter/terra) was investigated. It was found out that the Terra data 

which covers the southern part of the GrIS has an overpass time of 15:00±1:00 UTC which is 

within the 17:00±3:00 time span. The approximate acquisition time for data obtained from the 

IST 17:00±1:00 was set to 17:00 UTC and for the data obtained from IST 17:00±3:00 acquisition 

https://www.ssec.wisc.edu/datacenter/terra
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time was set to 15:00 UTC. This data set hereinafter is referred as MOD-IST-GrIS. It is clear that 

these approximate acquisition times will introduce uncertainties into the data assimilation 

framework which cannot be quantified. 

 

 

Figure 3.3: (a) number of IST measurement obtained at 17:00 ± 1:00 UTC, (b) number of IST observations for 

the combined data sets. The colorbar shows the number of IST measurements over the one year.   

3.3.2.2 Passive microwave brightness temperature data 

Passive microwave observations from the Advanced Microwave Scanning Radiometer - 

Earth Observing System (AMSR-E) were used for validation of results in this study. Passive 

microwave data are available in 12 channels, six frequencies (i.e. 6.9, 10.6, 18.7, 23.8, 36.5, and 

89GHz) approximately twice per day (on ascending/descending passes) with a resolution that 
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varies as a function of frequency. The data is available in Equal-Area Scalable Earth Grid 

(EASE-Grid) at a nominal resolution of 25 km. It is worth noting that resampling the passive 

microwave data from their native footprint resolution into the EASE-Grid would smooth out the 

information content of the passive microwave signals especially for the 36.5 and 89 GHz 

channels. Because the footprint area of 36.5 GHz channel is 87.9 km2 which is seven times 

smaller than the EASE-Grid area of 625 km2. Li et al., (2012; 2015a; 2015b) used passive 

microwave brightness temperature to characterize the deep mountain snowpack and reported that 

using the 37 GHz V-pol data from AMSR-E in its native footprint resolution significantly 

outperforms the EASE-Grid data. The initial reanalysis (described in more detail below) was 

conducted on the nominal atmospheric model grid, which is of the same order as the cells in the 

EASE-Grid (25 km). Furthermore, it should be reminded that resampling the data from 

EASE-Grid into the MAR grid also introduces some error into the data set. 

3.3.2.3 Near-surface meteorological data 

The snow/ice model (CROCUS) applied in this study, uses the meteorological data obtained 

from the hourly MAR simulation for the year 2009 and 2010. In a data assimilation approach, the 

forward model needs an ensemble of forcing variables. Here, the nominal forcings from MAR 

integration were perturbed to generate the ensemble of the prior methodological forcing variables 

(i.e. ,  ,  ,  
s l a

P R R T
    ). The prior forcings were used as input to CROCUS to generate prior 

estimates of mass loss fluxes which are the main components of reanalysis estimates of mass 

loss.     
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3.4 Experimental design  

The model setup and data assimilation steps are very similar to that explained in Navari et 

al., (2015). Hence, for brevity, only the key points are repeated here. In order to adjust the initial 

states of the snow/ice model to quasi-stationary condition, one-year model spin-up was 

performed. CROCUS was integrated forward in time using an ensemble of forcing data and 

nominal initial snow/ice profile from MAR. Then the ensemble of evolved snow profiles at the 

end of the spin-up simulation were used as initial profiles for prior (open-loop) and posterior 

simulations. Note that, for the both 2010 prior and posterior simulations, the snow/ice profile 

from the end of the 2009 posterior simulation was used.  

A data assimilation analysis is performed for the two-year period from January 2009 through 

December 2010. The year 2009 and 2010 were chosen since the hydrological year 2009-2010 

was characterized by an extreme negative SMB of 2.6 standard deviations below the 1958-2009 

average (Tedesco et al., 2011). Moreover, the IST record also shows that the GrIS has 

experienced a large positive IST anomaly in all seasons during 2010 (Hall et al., 2013). It should 

be noted that these are two years for which hourly MAR outputs were readily available.   

The feasibility of conditioning the GrIS surface mass fluxes using synthetically generated 

IST measurements based on a real temporal frequency of satellite-derived IST in an EnBS 

framework has been shown in our previous study. In this study, satellite-derived IST 

measurements have been used to generate reanalysis estimates of the GrIS surface mass fluxes 

via conditioning the forcing variables.   
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The measurement error standard deviation dictates how much the IST measurements are 

trusted relative to the prior estimate of IST in the assimilation step. The measurement error 

standard deviation at the simulation grid resolution (i.e. 25 km) depends (among other factors) on 

sensor spatial resolution and accuracy. In this study, IST measurement errors are assumed white 

Gaussian, with a standard deviation of 3 K. Although, there is not enough in situ IST 

measurements to validate the accuracy of the assumed measurement error standard deviation 

across the GrIS, different measurement error standard deviations can be investigated.  

3.5 Data assimilation results  

3.5.1  Illustrative results for updating surface temperature  

3.5.1.1  Single Pixel data assimilation experiments 

A straightforward method to evaluate the assimilation scheme is to explore the agreement 

between the posterior estimates of surface temperature with the satellite-derived IST. In theory, 

an effective data assimilation framework should transfer information from measurements into 

posterior estimates during the update step. As a result, the central tendency of posterior estimates 

should be in better agreement with the measurements than that of the prior estimates. 

Furthermore, the posterior ensemble spread (an indicator of uncertainty in the estimates) should 

be smaller than the prior ensemble spread. If this is not the case, then it should be either due to a 

very small Kalman gain or should be due to a near-zero innovation term which is defined as a 

difference between the predicted measurement and measurement (Forman et al., 2012).  

For illustrative purposes, satellite-derived ISTs and predicted prior and posterior surface 
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temperatures for sample pixels (i.e. pixels that co-located with JAR2, JAR1, Swiss camp GC-Net 

stations) in the ablation zone is presented in Figure 3.4a-f. These pixels hereinafter referred to as 

JAR1 pixel, JAR2 pixel, and Swiss cap pixel, respectively. This figure graphically illustrates how 

the EnBS uses the information in measured IST to update the prior estimates of surface 

temperature from the snow/ice model. As can be seen, EnBS moves the prior estimates toward 

the measurements and the posterior estimates are in better agreement with the IST measurements. 

The ensemble spread is a measure of confidence in the estimates. Here, interquartile range (the 

difference between the third and the first quartiles) has been used to demonstrate the distribution 

of the prior and posterior estimates of the ensemble members. The prior estimates of surface 

temperature have a larger spread, reflecting the uncertainty of the prior estimates; on the other 

hand, the posterior estimates have a narrower spread which shows how EnBS improves the 

confidence of the posterior estimates.    
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Figure 3.4 (a) the IST during the dry season (January) and (b) during the melt season (June) for the JAR2 

pixel. The red and blue shaded areas represent the prior and the posterior uncertainty band 

(interquartile range) and the red and blue lines represent the median of the prior and the median of 

the posterior respectively. The green circles represent the IST measurements that are assimilated to 

generate the posterior estimates. The (c and e) similar to (a) but for the JAR1 pixel, and Swiss camp 

pixel. The (d and f) similar to (b) but for the JAR1 pixel and Swiss camp pixels. 

The scatter plots of IST measurements versus predicted surface temperatures (i.e. prior and 

posterior) can be used to further evaluate the assimilation scheme. Figure 3.5a-c shows the 

scatter plots of IST data versus ensemble median of the prior and posterior estimates of surface 

temperature for the three pixels that co-located with the GC-Net stations (JAR2 pixel, JAR1 

pixel, Swiss camp pixel). At the JAR2 pixel, almost all data points from the prior estimates are 

above the 1:1 line indicating that CROCUS underestimates the surface temperature. In contrast, 

the posterior estimates of surface temperature are fairly distributed around the 1:1 line reflecting 
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the fact that the data assimilation system shifts the data points toward the 1:1 line and reduces the 

bias. The trend lines also show that the posterior result is in better agreement with the IST. At the 

JAR1 pixel and Swiss camp pixel, the prior tends to overestimate the surface temperature and the 

data assimilation system shifts the prior toward the lower temperature to better match the 1:1 line. 

These results indicate that how the data assimilation system effectively reduces both the positive 

and negative bias in the adjacent pixels.             

 

Figure 3.5 Scatter plots of satellite-derived IST measurements versus the prior and posterior surface 

temperatures from CROCUS, (a) for the JAR2 pixel, (b) for the JAR1 pixel, and (c) for the Swiss 

camp pixel. The red and blue circles represent the prior and posterior estimates respectively and the 

red line and the blue line represent the regression lines for the prior and posterior data points. The 

black line represents the 1:1 line.  

Two distinct features can be detected in the scatter plots, including a) presence of outliers 

(i.e. the data with significant negative bias) in the satellite-derived IST data set which most likely 

could be due to the cloud contamination; b) the prior and posterior regression lines are not 

parallel to 1:1 line, means that CROCUS underestimates the surface temperature in lower 

temperatures and overestimates the surface temperature close to the melting point.    
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3.5.1.2 Distributed data assimilation experiments 

The ability of the EnBS framework to update the surface temperature over the entire domain 

was evaluated using the RMSE, MAE, and an improvement metric . The EnBS reduces the 

spatial mean RMSE (MAE) of the posterior estimates of surface temperature about 69% (62%) 

from 1.1 K (0.7 K) to 0.3 K (0.3 K). The improvement metric is given by:   

( ) ( ) ( ) ( ) ( )
S S

prior posterior
T IST T IST              (3.9) 

where ( )  represents the improvement metric at measurement time  , 
S

prior
T and 

S

posterior
T are the 

ensemble median of the prior and posterior estimates of surface temperature, respectively, and 

IST represents the satellite-derived IST measurements. The metric   represents the contribution 

of the assimilated satellite-derived IST to the posterior estimates of the modeled surface 

temperature obtained from integration of CROCUS using updated forcings. This metric is positive 

if EnBS improves the IST; it is zero if EnBS does not update the surface temperature, and it is 

negative if EnBS degrades the surface temperature. The improvement metric was computed at the 

IST measurement time across the domain and then averaged over time. Figure 3.6a-c shows the 

mean of the improvement metric over the GrIS. EnBS improves (i.e.  >0) the surface 

temperature in 57%, 68%, and 69% of the computational pixels using a measurement error of 1 K, 

3 K, and 5 K respectively. The ensemble median of the posterior surface temperatures is in better 

agreement with the measured IST in the GrIS margin where most of the melt occurs. EnBS 

improves the surface temperature in about 77%, 87%, and 89% of the grid cells in the ablation 

zone using a measurement error of 1 K, 3 K, and 5 K respectively. In some pixels the algorithm 
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does not update the surface temperature or slightly degrade (i.e  <0) the surface temperature. 

The main question is whether the negative   value means model degradation or not.  

The posterior error of surface temperature in some pixel is slightly larger than the prior error 

relative to IST measurement, which leads to a negative   value (shown in blue color in Figure 

3.6a-c). However, it would be instructive to statistically evaluate these negative values. A 

hypothesis test was performed to evaluate the significance of differences between the prior and 

posterior estimates of surface temperatures, which lead to the negative   values. A two sample 

t-test was carried out to test the null hypothesis that the mean of the ensemble of the prior and 

posterior are the same. In particular, the t-test was conducted to determine: if there is sufficient 

evidence at the 0.05 level to conclude that the ensemble mean of the prior estimates of surface 

temperature differs from the ensemble mean of the posterior estimates of surface temperature. 

The t-test was applied to all pixels with a negative   value. The results were statistically 

insignificant and the null hypothesis was accepted. The results show that at the 95% confidence 

interval, less than 0.3% of the pixels reject the null hypothesis. Therefore, it can be concluded 

that, statistically, the mean of the posterior estimates of surface temperature at the pixels where 

the   metric is negative is the same as the mean of the prior estimates.  

It is worth noting that, the DA was run for three different measurement errors standard 

deviation of 1 K, 3 K, and 5 K, and prior and posterior were compared against IST. Results 

revealed that by increasing the measurement error standard deviation, the number of pixels with 

no improvement or negative   value considerably decreases. However, by increasing the 
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measurement error standard deviation from 3 K to 5 K the number of pixels with positive   to 

the total number of pixels improves by 1% on the other hand, the spatial mean of the   value 

decrease by 5%. Therefore, we chose to use a measurement error standard deviation of 3 K in 

this study. A similar measurement error standard deviation has been reported by Bateni and 

Entekhabi (2012) using land surface temperature data from MODIS (i.e., data from the same 

sensor). 

 

Figure 3.6 Maps of mean surface temperature improvements in [K] over the GrIS for (a) a measurement error 

of 1 K, (b) a measurement error of 3 K, and (c) a measurement error of 5 K. The red color represents a 

positive improvement. The white color represents no improvement, and the blue color represents the 

negative  value which statistically means no improvement   

Figure 3.7a and 3.8a show the mean IST over the GrIS for the year 2009 and 2010. It can 

clearly be seen that the ice sheet margin experiencing relatively warmer temperature, especially 

in the west and south-east. Figure 3.7b-c and 3.8b-c show the mean surface temperature error for 

the prior (i.e. prior - IST) and the mean surface temperature error for the posterior (i.e. posterior - 
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IST). The prior error map shows that the open-loop model considerably 

underestimates/overestimates surface temperatures, especially in the ice sheet margin where the 

melt occurs. The model underestimates the surface temperature in the ice sheet interior and 

overestimates the surface temperature in the ice sheet margin. Figure 3.7c and Figure 3.8c show 

that the posterior error is significantly smaller than of the prior error indicating that the data 

assimilation system effectively reduces the positive and negative biases in the prior estimates. It 

is important to emphasize that in this study, unlike many data assimilation applications the 

surface temperature (model state) has not been directly updated by conditioning the model 

surface temperature on satellite-derived IST, instead, the forcing data has been updated and the 

posterior estimates of surface temperature were obtained by integrating the CROCUS in time 

using the posterior forcings. Since surface temperature is the most important factor that regulates 

partitioning of the net radiation into the subsurface snow/ice, sensible and latent heat fluxes and 

plays a key role in the generation of runoff (Hall et al., 2013), therefore, it can be expected that a 

better estimate of surface temperature from a data assimilation system contributes to a better 

estimate of surface mass fluxes. Figure 3.7c and Figure 3.8c demonstrate that a) IST data 

contains valuable information to update the forcing variables; b) EnBS can effectively extract 

and use this information to estimate the surface temperature.  
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Figure 3.7 (a) mean IST [K] for 2009, (b) mean surface temperature error [K] for the prior (i.e., difference 

between the prior surface temperature and satellite-derived IST), (c) mean surface temperature error 

[K] for the posterior. 

 

Figure 3.8 the same as Figure 3.7 but for 2010 

3.5.2 Illustrative results for SML fluxes  

EnBS transfers the information content of satellite-derived IST into the posterior estimates 
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of surface mass fluxes via updating the forcing variables. Here, the posterior estimates were 

compared against the prior estimates since there is no knowledge of the true fluxes. Figure 3.9-a 

and 3.10-a shows time series of the prior and posterior estimates of runoff for the year 

2009(2010). As can be seen, the prior runoff is 97(144) mmWE which is significantly smaller 

than the posterior runoff estimates of 150(205) mmWE. By conditioning the model on real IST 

measurements, EnBS corrects a perceived bias in the forcing variables and propagates the 

correction to the posterior estimates. Bias-corrected forcings from the data assimilation suggest 

about 54% (42%) more runoff than the prior estimates for the year 2009 (2010). The prior and 

posterior simulations also provide an uncertainty estimate of the runoff. The lower and upper 

bounds of the light blue and light red bounds in Figure 3.9a and Figure 3.10a correspond to the 

25th and 75th percentile (i.e., interquartile range) of the ensemble estimates of the prior and 

posterior simulations respectively. The uncertain forcings in the prior simulation lead to a large 

ensemble spread as shown in light red. Assimilation of IST measurements reduces the 

uncertainty of the runoff from the posterior simulation (illustrated in light blue).  

Evaporation, sublimation, and surface condensation are known as turbulent fluxes that play 

an important role in the GrIS mass loss. Sublimation occurs through two main processes over the 

GrIS, including a) surface sublimation, and b) drifting snow sublimation which is very important 

in dry and windy conditions. Lenaerts et al., (2012) reported an average surface sublimation of 

16 Gtyr-1 and an average drifting snow sublimation of 24 Gtyr-1 during the 1960 to 2011 period. 

The CROCUS turbulent flux module does not have the capability to take into account snow drift 
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sublimation; therefore, this flux was ignored in estimates of surface mass fluxes. The sum of 

sublimation, evaporation, and surface condensation was used as an integrated mass loss term, 

which hereinafter is called turbulent fluxes. Figure 3.9b and 3.10b shows the cumulative mass 

loss of the GrIS through the turbulent fluxes. The posterior estimates suggest a turbulent mass 

loss of 18 (22) mm for the year 2009 (2010) which are very close to the prior estimates of 22 mm 

(25 mm), however, smaller spread represents increased confidence in the mass loss estimates via 

turbulent fluxes. The assimilation of IST measurements reduces the uncertainty in the posterior 

estimates of the turbulent fluxes as presented by the narrow blue band in Figure 3.9b and 3.10b.  

Now, the GrIS SML can be computed by adding the runoff and turbulent mass loss. Figure 

3.9c and 3.10c show the cumulative time series of the GrIS SML for the year 2009 and 2010. 

The data assimilation algorithm estimates a total SML of 169 mmWE, 228 mmWE for the year 

2009 and 2010 respectively, which are 42% and 35% larger than the prior estimates. In addition, 

EnBS reduces the uncertainty of the posterior estimates about 70% and 75% for the year 2009 

and 2010 respectively. In general, assimilation of IST measurements has two main impacts on 

the prior estimates: a) reduction of the bias by shifting of the ensemble median of the prior and b) 

reduction of the prior uncertainty.  
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Figure 3.9 Time series of (a) cumulative runoff, (b) cumulative mass loss through evaporation, sublimation, 

and surface condensation, and (c) cumulative mass loss over the GrIS (in millimeters of water 

equivalent) for 2009. The prior ensemble median is the red line and the posterior ensemble median is 

the blue line. The red shaded area corresponds to the ensemble interquartile range (IQR) for the prior 

simulation and the blue shaded area corresponds to the ensemble IQR for the posterior estimates. 

 

Figure 3.10 the same as Figure 3.9 but for 2010 
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3.5.3 The effect of cold bias on surface mass fluxes 

Hall et al., (2012) reported a cold bias of ~3 K using short period in situ measurements at the 

Summit station. The cold bias was detected under clear skies when the surface temperature was 

between -50ºC to -30ºC, therefore, this bias might be site dependent and temperature dependent. 

While there are not enough in situ measurements to verify the reported cold bias over the entire 

GrIS, investigating the effect of this cold bias on surface mass fluxes would be informative. The 

cold bias was removed from the IST measurements by increasing all measurements by 3ºC and 

the bias corrected IST was assimilated into the MAR forcing variables. CROCUS was run for 

several pixels over the different mass balance zones using updated forcings from the data 

assimilation. Results (not shown) indicate that removing 3ºC bias from the IST measurements 

while keeping all measurements at or below the freezing point significantly increases the surface 

mass loss in all pixels across the different mass balance zones with an extensive mass loss in the 

ablation zone. It is clear that increasing the temperature in the ice sheet margin where the 

summer temperature is close to the melting point would significantly impact the meltwater 

production and mass loss. In the interior area where the mean summer temperature is very low 

(i.e., less than -25ºC) increasing the IST is more likely to impact the mass loss through the 

turbulent fluxes. Results highlight that removing the cold bias from IST measurements can 

potentially increase the GrIS SML. Since the IST product is under development more effort is 

needed to characterize the bias and uncertainty of this product.   
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3.6 Assessment and verification 

Assessment and verification of the results are a critical part of this study but are heavily 

limited by the lack of suitable verification data sets. In this section, the feasibility of using 

several potential data sets for verification of data assimilation results was investigated.     

3.6.1 Melt extent and melt duration 

3.6.1.1 Satellite-derived melt extent and melt duration over the GrIS  

Melt extent and melt duration can be used as potential criteria to evaluate the data 

assimilation results over the GrIS, albeit in a limited way. In this study melt extent and melt 

duration from AMSR-E using the DAV algorithm was compared with that from CROCUS. We 

chose to use DAV because DAV is a straightforward retrieval algorithm that does not require 

field measurements to obtain the melt threshold parameters. The histogram of the brightness 

temperature over the GrIS can be used to determine the brightness temperature threshold. The 

histogram of the measured brightness temperature in areas that experience melt shows a bimodal 

distribution. The lowest population between the two peaks represents the threshold between dry 

snow and wet snow (Ramage and Isacks, 2003). The histograms of the brightness temperatures 

for the year 2009 and 2010 were constructed using all observations over the ablation and 

percolation zones. A brightness temperature corresponding to the lowest population between the 

two peaks for the year 2009 and 2010 was 251 K and 249 K respectively. In this study, a DAV 

threshold of ±18K was adopted from Tedesco (2007) and Apgar et al., (2007). The melt extent 

and melt duration for 2009 and 2010 were obtained by applying the DAV method to the 
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AMSR-E data.  

3.6.1.2 Melt extent and melt duration from CROCUS-MEMLS 

To apply the DAV method to the CROCUS output, snow layer properties required to be 

translated into the brightness temperature. The microwave emission model of layered snowpack 

(MEMLS: Matzler and Wiesmann, 1999; Wiesmann and Matzler, 1999) can be utilized to 

estimate the brightness temperature using snow layer properties. Estimates of the prior and 

posterior melt extent and melt duration need a coupled CROCUS-MEMLS system. However, 

generating prior and posterior ensemble estimates of brightness temperature by means of the 

coupled CROCUS-MEMLS are computationally expensive. Therefore, as a pilot study, the DAV 

method was applied to a deterministic CROCUS-MEMLS system. In this way, we tried to assess 

the feasibility of using the CROCUS-MEMLS system to predict the melt extent and melt 

duration. The same procedure that was used to estimate the satellite-based brightness temperature 

threshold was applied to the CROCUS-MEMLS output and a brightness temperature threshold of 

265 K was obtained for the year 2009. For the DAV threshold (i.e. the threshold B) a sensitivity 

experiment was performed to obtain an optimum DAV threshold. It was found out that the results 

are not sensitive to the DAV threshold. This is more likely due to the fact that the changes in 

brightness temperatures due to the presence of liquid water in the snowpack are abrupt and larger 

than the range of the reported DAV threshold value of ±18K, hence, the same DAV threshold of 

±18K was implemented to the CROCUS-MEMLS outputs.  

Our preliminary findings indicate that the predicted melt extent (Figure 3.11c) and melt 
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duration (Figure 3.11a) is larger than the satellite-derived melt extent (Figure 3.11c) and melt 

duration (Figure 3.11b). An inability of the CROCUS-MEMLS system to accurately predict the 

brightness temperature is the main reason for this overestimation which has been discussed in 

more detail in chapter 4.  

 

Figure 3.11 Melt extent and melt duration using DAV method, (a) map of melt extent and melt duration using 

CROCUS-MEMLS system, (b) map of melt extent and melt duration using AMSR-E data, (c) time 

series of melt extent from AMSR-E (blue) and from CROCUS-MEMLS (red).   

3.6.1.3 Melt extent and melt duration using liquid water content in the snowpack 

Another potential method to verify the results is using liquid water content of the snowpack 

as a criterion to detect the melt extent and melt duration. Modeled liquid water content (LWC) of 
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the snowpack has been used in several studies as a metric to diagnose melt. Abdalati and Steffen 

(1995) reported that a snowpack LWC of 0.5% by volume in the top one meter of snowpack is 

corresponding to sharp increases in XPGR using SMM/I data. Abdalati and Steffen (1997) 

increased the LWC threshold from 0.5% to 1% using the Scanning Multichannel Microwave 

Radiometer (SMMR) data. Fettweis et al., (2006) applied a LWC of 1% and Fettweis et al., 

(2011) applied a LWC of 1.1% to the top one meter of snow profile from MAR to estimate the 

melt extent and melt duration. It should be highlighted that, Abdalati and Steffen (1995, 1997) 

reported that a) the value of 1% in the top one meter is not a theoretically defined metric, b) this 

value is based on in situ data from ETH/CU camp (also called Swiss camp) and it might be site 

dependent, c) the threshold of 1% was used to be consistent with the other studies conducted by 

Mote and Anderson (1995), and d) emission depth of the wet snow with a LWC of about 2% is 

limited to about 2 cm and 8 cm for the 37 GHz V-pol and the 19 GHz H-pol respectively. 

Therefore, the wetness below the emission depth barely influences the microwave signals. The 

last point has also been reported by Matzler (2006).  

To obtain a threshold for LWC and depth of wet snow, a set of experiments were performed 

using the MEMLS. Several snow profiles from the different mass balance zones were selected 

and LWC and depth of wet layers gradually increased while the other snow layer properties (i.e. 

layer density, layer temperature, layer height) kept constant. Results (not shown) revealed that 

there is an abrupt change in modeled brightness temperature when LWC increases from 0 to 

0.2-0.5% and after that a further increase in LWC does not significantly change the modeled 
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brightness temperature. Therefore, a LWC of ~0.5% by volume can be set as a melt threshold. 

This threshold is in agreement with Abdalati and Steffen (1995) and Tedesco et al., (2006, 2007) 

which reported that the minimum detectable LWC ranges between 0.2 and 0.5%.  

Sensitivity experiments on the thickness of wet layers showed that for a LWC of 0.2% and 

larger, the modeled brightness temperature shows an abrupt change when the thickness of the 

wet layer reaches ~1 cm and after that further increasing the wet layer thickness does not 

significantly change the brightness temperature. However, since the 37 GHz V-pol can see the 

liquid water under the frozen surface layers, it would be more realistic to look at the LWC in the 

wet layers not just the top 1 cm which might be frozen during the night (i.e. LWC=0).  

Using a LWC threshold of 0.5% (by volume) and applying the threshold to the mean daily 

LWC of the snowpack, melt extent and melt duration were computed for the year 2009 and 2010 

over the GrIS. As shown in Figure 3.12 and Figure 3.13 both the prior (Figure 3.12a and Figure 

3.13a) and the posterior simulations (Figure 3.12b and Figure 3.13b) overestimate the melt 

duration in comparison with the satellite-derived values (Figure 3.12c and Figure 3.13c). 

However, time series of daily melt extent from both the prior and posterior are in good 

agreement with the daily melt extent from AMSR-E (Figure 3.12d and Figure 3.13d).  

It seems that the usage of melt extent and melt duration is an overly bulk metric to evaluate 

the data assimilation results. The prior and posterior melt extent is almost identical even though 

the prior and posterior runoff is very different. It can be argued that the prior and posterior melt 

extent can be similar for different runoff values since changes in runoff values can be due to an 
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increase in melt energy during the melt period or due to an increase in the number of melting day 

in the same pixel which will not affect the melt extent. The other possible reason is the fact that a 

satellite-derived melt extent is based on instantaneous observation at which there might be no 

melt while the daily ensemble mean might show small melt. In general, melt extent and melt 

duration are significantly influenced by the LWC threshold and it seems that there is no 

physically based method to provide a robust LWC threshold.     

 

   Figure 3.12 Maps of melt duration from (a) AMSR-E data using the DAV, (b) prior simulation using a LWC 

threshold of 0.5% by volume, (c) the same as (b) but for the posterior simulation. (d) time series of 

melt extent from AMSR-E data (black), the prior simulation (blue), the posterior simulation (red). 

The blue shaded area represents the interquartile range (IQR) of the prior estimates and the red 

shaded area represents the interquartile range of the posterior estimates   
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Figure 3.13 the same as figure 3.12 but for 2010. 

3.6.2 K-transect SMB measurements   

Since 1990 SMB measurements have been carried out at eight locations in southern 

Greenland (Figure 3.14), near the town of Kangerlussuaq at different elevations (van de Wal et 

al., 2012). This data set is the longest record of ground-based SMB measurements in Greenland. 

The measurements and adjustment of the stakes were conducted in late August every year. 

Among the stations, six stations are located in the ablation zone, one in the percolation zone and 

the last station in the accumulation zone. Here we compare the results of the prior and posterior 

SMB with SMB from K-transect measurements. As can be seen (Figure 3.15) the data 
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assimilation system provides better estimates of SMB in the ice sheet margin, but it fails to 

correctly estimate the SMB further inland. The prior model performs better in the inland pixels, 

but they are both significantly different from in situ measurements. A close inspection of surface 

temperature during the melt period shows that the posterior surface temperature is in better 

agreement with IST. However, there are significant differences between the observed and 

modeled SMB. There are a number of possible explanations for the observed discrepancy. The 

lead candidate for explaining this discrepancy is the fact that the S6, S7, and S8 stations are 

located in the GrIS dark zone (a narrow region stretched from 65ºN to 70ºN where the snow 

surface is darker than surrounding areas due to the higher concentration of impurities) (Wientjes 

et al., 2011). Therefore, an albedo feedback mechanism (Box et al., 2012) due to snow impurities 

and the fact that CROCUS does not take into account the snow impurities could be the main 

reason for significant differences between the modeled and measured SMB, particularly at the 

above-mentioned stations. The presence of liquid water in a different form (pond, lake, and 

stream) significantly decreases the albedo and further enhances melting. This phenomenon can 

be the main reason for differences between the predicted and measured SMB in the S9 station. 

Another reason might be inaccurate IST acquisition time as explained in Section 3.3.2.1. It was 

assumed that all measurements within 17:00 ± 1:00 have an acquisition time of 17:00 and all 

measurements within 15:00 ± 1:00 have an acquisition time of 15:00. Another possibility might be 

the uncertainty of IST data since this data set is still under development. Shuman et al., (2014) 

highlighted that the further development of the IST product should benefit from a better cloud 
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mask and an improved algorithm to take into account the cold bias. The CROCUS physics 

representation is imperfect; therefore model error can be another possible reason for the observed 

discrepancy. A comparison between the model elevation and real elevation in the K-transect 

stations shows that the model elevation is higher than the real elevation (i.e., 10 m to 75 m) 

which leads to less snow/ice melt.     

 

3.14 The location of the K-transect stations over the GrIS  
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Figure 3.15 SMB at the K-transect stations, the black circles and the line show the in situ observation, the red 

and blue circles and lines are the prior and posterior SMB   

 

3.7 Conclusion  

In this work an EnBS data assimilation methodology was implemented to integrate the 

satellite-derived IST with the a priori estimate of forcing data from the MAR regional climate 

model aiming to generate reanalysis estimates of the GrIS surface mass fluxes. We showed that 

the EnBS is able to retrieve the surface temperature given the biased forcing data from MAR. 

Pixel scale comparison between the EnBS estimates and open-loop simulation demonstrates the 

advantages of assimilating IST measurements. Surface temperatures from the data assimilation 

results are closer to satellite-derived IST measurements than the open-loop estimates. Comparing 

the results over the GrIS showed that the EnBS reduces the both positive and negative biases in 

the prior estimates of surface temperature to better match the IST measurements. The results also 
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showed that the spatial mean RMSE and MAE of the posterior estimates are 69% and 62% 

smaller than that of the prior estimates relative to the IST measurements. 

While a further verification of the results is critical, it is limited by the sparse amount of 

verification data set. Here, the feasibility of verification of results using several data sets was 

investigated. We compared melt extent and melt duration from our assimilation framework with 

that of passive microwave remote sensing data set. The well-known DAV method was applied to 

the both passive microwave data from AMSR-E and predicted brightness temperature from a 

deterministic CROCUS-MEMLS system. The CROCUS-MEMLS system overestimates the melt 

extent and melt duration in comparison with the results from satellite-derived passive microwave 

data, likely due imperfect CROCUS-MEMLS system.  

We also used the snowpack LWC as a criterion to detect the melt extent and melt duration. 

Our results using mean daily LWC of 0.5% over the wet layers overestimates the melt duration 

while the time series of melt extent is in good agreement with the satellite-derived melt extent. It 

can be argued that the snowpack LWC is not a robust criterion to detect the melt extent and melt 

duration since both the LWC threshold and the depth of snowpack which the LWC has been 

measured can be tuned to better match the melt extent and duration from the passive microwave 

(see Section 3.6.1.3).  

In general melt extent and melt duration are bulk metrics to be used for evaluation purpose. 

Moreover, runoff is not directly related to the melt extent and melt duration, for instance, an 

increase in albedo due to the presence of liquid water or exposed ice could increase the melt 
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while would not affect the melt extent and or melt duration. 

We also used the K-transect point scale SMB measurements to assess our results. It was 

shown that EnBS significantly improved the results in the marginal pixel where the SHR 

K-transect station is located. However, it fails to improve the SMB of the pixel that encompass 

the S6, S7, and S8 stations. Since these three stations are located in the GrIS dark zone one 

possible reason could be melt anomaly due to higher albedo in this region. While the CROCUS 

albedo module cannot simulate impurities, satellite measurements provide valuable information 

about the spatial variability of albedo over the GrIS. This highlights the information content of 

albedo products and shows the value of assimilating albedo in future work.  

While we acknowledge that EnBS might provide a suboptimal solution due to the 

nonlinearity of the system and the lack of enough measurements for assimilation, the other 

reason for suboptimal results could be a lack of accuracy of the IST measurements since this 

product is still under development. Future work should benefit from developing physically based 

criteria to be able to compare the results with passive microwave data or other remote sensing 

data in a more consistent way.    
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4 Feasibility of Radiance Assimilation  

4.1 Passive microwave applications in cryosphere 

Passive microwave brightness temperature measurements from different platforms have 

been widely used in cryosphere applications (e.g., Abdalati and Steffen 1997; Tedesco et al., 

2007; Fettweis et al., 2011). While visible imagery is available for cloud-free regions and only 

during the daylight time, passive microwave provides continuous imagery of the Earth’s surface 

during day and night. In addition, unlike visible imagery, the passive microwave signal is not 

significantly affected by different atmospheric components, especially in cold regions (e.g., Qiu 

et al., 2007). Therefore, continuous passive microwave data theoretically contains information 

that may be useful to better characterize the surface processes during the day and night for both 

cloudy and clear sky conditions.        

4.1.1 Passive microwave melt signature  

A dry snowpack can be considered as a column of air and ice crystals with a dominant 

volume scattering mechanism. In a wet snowpack, liquid water with higher dielectric constant 

fills the gaps between the ice crystals and increases the dielectric constant of the snowpack. 

Surface scattering is directly related to the dielectric constant at the interface between the layers. 

Therefore, as liquid water increases in the snowpack the surface scattering also increases and 

begins to dominate over the volume scattering. In addition, as liquid water increases, the 

emissivity of the snowpack increases and approaches that of a blackbody (Abdalati and Steffen 
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1995). This property of liquid water in the snowpack has been used to develop different 

algorithms to classify wet and dry snow (e.g., Abdalati and Steffen 1995, 1997; Ramage and 

Isacks, 2002).  

Over the last two decades, several algorithms have been developed and widely used to map 

the areal extent of melting snow from passive microwave data. The Cross-Polarized Gradient 

Ratio (XPGR) introduced by Steffen et al., (1993) and improved by Abdalati and Steffen, (1995, 

1997) and diurnal amplitude variation (DAV: Ramage and Isacks, 2002; Tedesco et al., 2007) are 

two well-known satellite-derived melt classification algorithms. The XPGR is a normalized 

difference between the 19 GHz horizontal channel and the 37 GHz vertical channel as follows:  

,19 ,37

,19 ,37

b H b V

b H b V

T T
XPGR

T T


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
           (4.1) 

where the 
b

T
 
represents the brightness temperature at 19 and 37 GHz, and the indices V and H 

represents the vertical and horizontal polarization respectively. The XPGR has been validated 

using in situ liquid water measurements at the Swiss camp (also called ETH/CU camp) during 

the 1990 and 1991 field seasons. Abdalati and Steffen, (1995) reported that a sharp increase in 

the XPGR value (using Special Sensor Microwave/Imager (SSM/I) data) corresponds to the days 

that mean liquid water content in the top one meter of the snowpack is approximately 0.5% by 

volume. Using Scanning Multichannel Microwave Radiometer (SMMR) data, Abdalati and 

Steffen (1997) reported that a sharp increase in the XPGR corresponds to a mean liquid water 

content of 1% in the top one meter of the snowpack. However, they highlighted that the value of 

1% in the top one meter of snowpack is not a robust metric due to the fact that: (1) The XPGR 
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has been validated at one location and the results might be site specific. (2) The emission depth 

in a snowpack is highly dependent on liquid water content and for a liquid water content of 2% 

the emission depth of the 37 GHz and 19 GHz channels are limited to approximately 2 cm and 8 

cm respectively (Abdalati and Steffen, 1997). Therefore, averaging liquid water content over the 

top one meter might underestimate melt extent and melt duration. (3) The threshold of 1% was 

used to be consistent with the other study conducted by Mote and Anderson (1995). Fettweis et 

al., (2006, 2011) used a mean daily liquid water content of 1% and 1.1% in the top one meter of 

snow to compare the satellite-derived melt extent and melt duration with the predicted melt 

extent and melt duration from the MAR regional climate model. Note that the terms “predicted 

brightness temperature” and “modeled brightness temperature” have been interchangeably used 

in this document.     

The second algorithm is based on the DAV, which is the difference between ascending and 

descending passes of the brightness temperatures at 19.35 or 37 GHz. The method is defined 

based on two thresholds, including 1) a brightness temperature threshold (A), 2) a DAV threshold 

(B), which is the difference between the brightness temperatures from ascending and descending 

passes (e.g., Tedesco 2007). The threshold (A) can be obtained from the distribution of measured 

brightness temperatures over the study area. The histogram of the measured brightness 

temperatures in a region experiencing melt shows a bimodal distribution. The brightness 

temperature with the lowest population between the two peaks is considered as the threshold (A) 

(Ramage and Isacks, 2002). Apgar et al., (2007) and Monahan et al., (2010) reported a DAV 
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threshold value (B) of ±10 K for the data from SSM/I and a value of ±18 K using data from 

AMSR-E.  

4.1.2 Snow depth and snow water equivalent retrieval from passive microwave  

In many applications, passive microwave has been directly used in a retrieval algorithm to 

estimate the snow depth (e.g., Kelly et al 2003; Biancamaria et al., 2008) and snow water 

equivalent (e.g., Chang et al., 1987) for seasonal snowpacks. While passive microwave retrieval 

algorithms provide an approximate estimate of snow water equivalent (SWE) and snow depth for 

shallow snowpack, the well-known saturation effect has limited the application of this algorithm 

in deep snow. For each passive microwave frequency, there is a certain threshold after which a 

further increase in snow depth does not affect the observed microwave brightness temperature 

(Durand et al., 2006). Kelly et al., (2003) reported a saturation depth of 50-100 cm (~100 times 

of the wavelength) for the 37GHz brightness temperature. Moreover, Durand et al., (2008) 

reported that a good estimate of SWE needs an accurate estimate of snow grain size, which is 

very difficult to obtain. Foster et al., (2005) reported that grain size and vegetation cover are two 

key factors that introduce significant error in SWE retrieval algorithms from passive microwave 

measurements. Much work has been done to incorporate knowledge of grain size and vegetation 

canopy into passive microwave retrieval algorithms. Unsatisfactory results from these efforts led 

some researchers to use data assimilation techniques to improve the SWE estimates.    
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4.1.3 Passive microwave assimilation      

 Satellite-based passive microwave measurement is a long continuous data record with 

approximately 40 years of data. This data set contains valuable information about the snow and 

ice processes. However, the application of passive microwave data in data assimilation 

frameworks has been mostly reported in the context of synthetic experiments for seasonal 

snowpack (e.g., Durand and Margulis 2006; Durand and Margulis 2007, Bateni et al., 2013). In a 

few studies, the data assimilation technique has been used in small test sites using ground-based 

radiance observations. For instance, Durand et al., (2008) used snowpit data and ground-based 

radiometer measurements from the NASA Cold Land Processes Field Experiment (CLPX) to 

quantify uncertainty of radiance assimilation. Ally et al., (2011) used ground-based passive 

microwave data in a data assimilation framework to improve the SWE estimate in the NASA 

CLPX site. Bateni et al., 2015 used a data assimilation framework to characterize SWE and the 

underlying soil freeze-thaw state in the CLPX site. Recently, Li et al., (2015a, 2015b) used 

AMSR-E data to improve the SWE estimate in the upper part of the Kern River Basin, Sierra 

Nevada. The main reasons for the limited application of passive microwave in data assimilation 

frameworks are due to 1) the fact that the spatial resolution of the passive microwave 

measurements is very coarse which makes it very difficult to relate point scale results to satellite 

footprint scale; 2) difficulties related to estimation of snow states especially snow grain size and 

their representativeness; 3) the well-known saturation effect of passive microwave signal, and 4) 

the lack of accuracy of predicted passive microwave brightness temperature relative to measured 
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brightness temperature. Some studies have tried to address these issues; however, more effort is 

needed to be able to properly implement data assimilation techniques over a large-scale domain 

using satellite-derived passive microwave measurements. In particular, characterizing error and 

uncertainty between the measured and modeled brightness temperatures requires an extensive 

effort.      

4.2 Motivation  

Passive microwaves emitted from snow covered surfaces contain information about snow 

grain size, snow phase, snowpack stratigraphy, and snow layer temperature. But the information 

content of passive microwave data remains under-utilized due to an indirect and implicit relation 

between passive microwave and snow states and fluxes. Assimilation is a key step to exploit the 

information content of passive microwave data. In passive microwave radiance assimilation, a 

radiative transfer model (e.g., MEMLS: see Section 4.3.2.1) must be used to predict 

satellite-derived brightness temperatures. The predicted values contain errors; therefore, the first 

necessary step is to characterize the error and uncertainties associated with predicted values prior 

to using them in a data assimilation framework. Understanding and characterizing the errors are 

the main motivations for this chapter. 

Many studies tried to characterize the error and uncertainty of the microwave brightness 

temperature of seasonal snowpack. Tedesco and Kim (2006) conducted an inter-comparison 

between four different electromagnetic models and highlighted that there is no superior model 

and all models have some advantages and disadvantages. Tedesco and Kim (2006) reported that 
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MEMLS can reproduce the brightness temperature at 37 GHz vertical polarization with an 

average error of 15% to 20%. Tedesco et al., (2006) used the dense media radiative transfer 

theory (DMRT) and snowpit data and ground-based radiometer data from the NASA CLPX to 

compare the predicted and measured brightness temperatures. They were able to reproduce 

brightness temperatures at 37 GHz channels with an error of ~20 K. Durand et al., (2008) used 

snowpit data and ground-based radiometer measurements from the NASA CLPX and reported a 

difference of 3.4 K and 9.3 K between the predicted and measured brightness temperatures at 37 

GHz horizontal and vertical polarization respectively. For a comprehensive study, the reader is 

referred to the following references (e.g., Tedesco et al., 2006; Tedesco and Kim 2006; Durand 

and Margulis 2007, Durand et al., 2008, Brucker et al., 2011; Picard et al., 2013;  Roy et al., 

2015). However, to the best of my knowledge, there is no study to characterize the error and 

uncertainty associated with predicted and measured passive microwave brightness temperatures 

over the GrIS. Here, it has been hypothesized that the sources of error and uncertainty in passive 

microwave brightness temperatures for both seasonal snowpack and ice sheet are similar while 

the underlying media is different.   

Durand et al., (2008) reported three sources of uncertainty in predicted brightness 

temperature using the MEMLS radiative transfer model as follows: 1) uncertainty associated 

with MEMLS physics, 2) uncertainty associated with lack of vertical discretization of the 

snowpack, 3) uncertainty in input variables from the land surface model. With regard to the first 

source of uncertainty, it is worth noting that, while the MEMLS physics is not perfect, it is one of 
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the most widely applied models to predict microwave emission and validation of MEMLS has 

been reported in the literature (e.g., Wiesmann and Mätzler 1998; Wiesmann and Mätzler 1999). 

Furthermore, the discussion about MEMLS physics is beyond the scope of this dissertation. 

However, the effect of grain size parameterization on predicted brightness temperature has been 

investigated. With regard to the second source of uncertainty, it is expected that the use of 

CROCUS can help resolve this issue because CROCUS has the ability to finely discretize the 

snowpack in the vertical direction. A detailed discussion has been given in Section 4.3.2.3 

(CROCUS modification). With regard to the third source of uncertainty, Durand et al., (2008) 

used snowpit data and ground-based measurements and reported that the predicted brightness 

temperature is very sensitive to the presence of ice layers, error in exponential correlation length, 

and error in density. Considering the above discussion, the focus of this chapter would be on the 

third source of uncertainty explained above. The goal is to understand the effects of grain size 

parameterization, uncertain input variables, and sub-grid heterogeneity on predicted passive 

microwave brightness temperature in the context of simulating microwave emission from the 

GrIS.   

4.3 Data and model  

4.3.1 Data  

4.3.1.1 Snowpack characteristic  

Availability of real snow profiles over the GrIS is limited to the location of ice core projects 
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or field campaigns which are very sparse in time and space. On the other hand, snow/ice models 

and regional climate models (RCMs) provide spatially and temporarily distributed estimates of 

snow profile which can be used to predict brightness temperature over the GrIS using a radiative 

transfer model.          

The snow profile from a large scale RCM (i.e., MAR) contains error and uncertainties. It 

was found out that the snow profile in some pixels has an unusual structure which can be due to 

an artifact in the model. For instance, in MAR version 2 the thickness and density of the surface 

layer in some pixels are about 40 cm and 300 kg/m3 respectively while the thickness and density 

of the next layer under this thick layer are about 1 cm and 150 kg/m3 respectively. In addition, 

MAR uses large grain size parameters to characterize the solid ice which might negatively affect 

the predicted brightness temperature. These issues have been discussed in the following sections. 

Model spin-up, i.e. running the snow/ice model until it reaches a state of statistical 

equilibrium under the applied forcing, could mitigate some errors and uncertainties in the initial 

snow profile. In this study, a one-year spin-up was performed to bring the snow profile to the 

equilibrium state and correct the snow layer properties. An inspection of snow profile after the 

spin-up period shows that CROCUS can effectively correct the snow profile from MAR. 

However, very large grain size parameters associated with solid ice at the bottom of the profile in 

the ablation and percolation zones remain unchanged. The sensitivity of predicted brightness 

temperature to this large grain size has been explained in (Section 4.4.4 Issues related to MAR 

snow profiles). Given the initial snow profile from the spin-up simulation, CROCUS was run 
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forward in time to simulate the time evolution of snow profile for each grid cell over the GrIS 

(Fig 4.1). CROCUS provides estimates of the snow states, including layer thickness, grain size, 

temperature, density, and liquid water content at each time step.  

The GrIS consists of three mass balance zones with different snow/ice profiles. In the 

ablation zone, a typical snow profile is similar to a seasonal snowpack, but over solid ice. Note 

that during summer it might just be bare ice. In the percolation zone, accumulation exceeds 

ablation; therefore, a typical snowpack consists of snow layers from several snow seasons. Snow 

profiles in the percolation zone are highly heterogeneous (e.g., Brandt et al., 2009; Harper et al., 

2012) and consist of ice lenses, ice pipes, and ice layers. The shape, depth, and density of the ice 

features depend on the structure of the snowpack, melt intensity and melt duration (e.g., Pena et 

al., 2015). In the percolation zone, the snowpack heterogeneity introduces considerable 

uncertainty into the estimates of brightness temperature. Moving toward the dry snow zone, the 

heterogeneity of snow profiles reduces. However, extreme snowmelt events (e.g. Nghiem et al., 

2012; Hall et al., 2013) which can extend over the dry snow zone have introduced layers of ice 

(i.e. heterogeneity) to the snow profiles in the dry snow zone (Pena et al., 2015).   

4.3.1.2 Measured passive microwave   

In this study, passive microwave brightness temperatures were obtained from the AMSR-E 

instrument on the NASA-EOS Aqua satellite. The AMSR-E sensor provides horizontally and 

vertically polarized passive microwave data in 12 channels, six frequencies with a spatial 

resolution of 5.4km (89GHz) to 56km (6.9 GHz). The data has already been projected into the 
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North Pole Lambert Azimuthal Equal Area grid which is available online at 

ftp://sidads.colorado.edu/pub/DATASETS/nsidc0301_amsre_ease_grid_tbs/north/. For 

application over the GrIS, the data was resampled to the MAR/CROCUS grid (see Fig 4.1).       

4.3.2 Passive microwave radiative transfer model 

Predictions of brightness temperature using snow properties are required in order to be able 

to compare with satellite-measured brightness temperature. Electromagnetic wave theory and the 

radiative transfer theory are two commonly used methods to predict the brightness temperature. 

For a comprehensive review on this topic, the reader is referred to Bucker et al., (2011); and 

Löwe and Picard (2015). 

4.3.2.1 Microwave Emission Model of Layered Snowpack (MEMLS)  

In this study, we chose to use radiative transfer theory by implementing MEMLS 

(Wiesmann and Mätzler 1999). MEMLS treats a snowpack as a stack of horizontal parallel layers. 

The layers are introduced to the model with properties like thickness, exponential correlation 

length (related to grain size), density, liquid water content, and temperature. MEMLS employs 

the sandwich model to take into account both the internal scattering and reflections at the 

interfaces. MEMLS uses an empirical relationship or the improved Born approximation to 

determine the scattering coefficient. The scattering coefficient depends on the correlation length, 

density, and frequency. The absorption coefficient depends on density, temperature, and 

frequency (Wiesmann and Matzler, 1998). While the real part of the dry snow effective 

ftp://sidads.colorado.edu/pub/DATASETS/nsidc0301_amsre_ease_grid_tbs/north/
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permittivity depends on density (Matzler 1996) a fixed value of 3.15 has been used for the real 

part of ice permittivity (Tedesco and Kim 2006). MEMLS uses the method by Matzler (1998) for 

the imaginary part of ice permittivity. Note that by adding the improved Born approximation to 

MEMLS, it became a complete physically based model (Matzler and Wiesmann, 1999).      

A detailed evaluation of MEMLS performance for the different type of snowpack has been 

reported in the literature (e.g. Wiesmann and Matzler, 1999; Matzler and Wiesmann, 1999, 

Bucker et al., 2011).   

4.3.2.2 Snow input parameters 

MEMLS needs physical properties of the snowpack to predict brightness temperature. 

CROCUS provides all these input variables except the exponential correlation length, which is a 

function of grain size parameters. Different land surface models provide different grain size 

parameters. While some models (e.g., Jordan grain size model 1991; Flanner and Zender grain 

size model, 2006) attempt to estimate the grain size diameter (
g

D ) other models (CROCUS, 

SNOWPACK (Lehning et al., 2002)) define the grain size by three parameters such as dendricity, 

sphericity, and grain size. Brun et al., (1989) proposed an empirical equation to compute an 

optical equivalent diameter ( o
D ) using the dendricity, sphericity, and grain size. A complete 

discussion about the relation between the grain size and the exponential correlation length has 

been reported in Mätzler (2002). This relationship is given by:  

2
(1 )

3
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where 
iD is the grain size or optical grain diameter and   is an empirical coefficient 

suggested to be 0.75 and  is the volumetric fraction of ice. Mätzler (2002) suggested an   

value of 0.4 and 0.3 for dendritic and non-dendritic snow respectively; when the coupled 

CROCUS-MEMLS is used. For the coupled Sntherm-MEMLS model, Mätzler (2002) suggested 

a constant   value of 0.16. Huang et al., (2012) studied the impact of different grain size 

models on estimates of brightness temperature. Huang et al., (2012) suggested a constant value 

of 0.11 for  using the grain size of the SNOWPACK model. For the grain size model of 

Flanner and Zender (2006), Huang et al., (2012) suggested an   value of 0.2 and for the 

Jordan grain size model (Jordan 1991) they suggested an   value of 0.11. Brucker et al., (2011) 

compared the observed and modeled brightness temperature to adjust  and found that the best 

fit with a   value of 0.63, which results in an   range from 0.25 to 0.4. Following Mätzler 

(2002) and Brucker et al., (2011), three different   values of 0.2, 0.3, and 0.4 were used to 

relate the optical grain diameter with the exponential correlation length.   

In this study, brightness temperatures were predicted using MEMLS version 3 available at 

(http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html). MEMLS needs snow 

layer temperature (K), volumetric liquid water content, density (kg/m3), thickness (cm), salinity 

(part per thousand), and exponential correlation length (mm) to predict brightness temperature. 

Besides the snow parameters, MEMLS needs other input parameters to complete the simulation. 

The input parameters include 1) the desired frequency, in this study our focus is on V-pol 

brightness temperature at 36.5 GHz, which proved to be sensitive to liquid water and has been 

http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html


111 

 

widely used in different retrieval algorithms. 2) The incident angle, AMSR-E has an incident 

angle of 55º degree, therefore, the same incident angle was used as an input to MEMLS. 3) 

Snow-ground reflectivity, MEMLS computes brightness temperature using both the snowpack 

parameters and the snow-ground reflectivity. In seasonal snow, the empirical model introduced 

by Wegmuller and Matzler (1999) can be used to provide underlying ground parameters. In this 

application, approximately top 10 meters of the ice sheet have been simulated. The snow/ice 

layer under the simulated layers was used as a bottom boundary condition; hence, there is no 

need to use the snow-ground interface parameters. 4) The sky downwelling brightness 

temperature (
sky

T ) is also needed by MEMLS. The lowest possible value is 2.7 K which also 

means a situation without any atmospheric influence. In general the atmospheric influence on 

sky
T  is higher on high frequencies than low frequencies. In many applications in cold regions, 

due to the lack of water vapor and absence of clouds, the effect of the atmosphere is negligible. A 

sensitivity analysis on sky brightness temperature (i.e., increasing 
sky

T from 2.7 K to 10 K) 

shows that by increasing 
sky

T , predicted brightness temperatures slightly increase, however, the 

differences between brightness temperatures from different sensitivity experiments are negligible. 

This result is in agreement with the results reported by Durand et al., (2008). In this study, 

following Durand et al., (2008), the lowest possible value of 2.7 K was used for simplicity. 5) 

The ground temperature needs to be provided, here, the bottom layer temperature was used as the 

ground temperature. 6) Finally, the type of scattering coefficients must be determined. As 

explained above, two scattering options are available, one is based on an empirical equation and 
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the other is the physically based improved Born approximation. Both scattering coefficients have 

validity and both suffer from uncertainties. In the improved Born approximation, the correlation 

length describes the snow structure. For a snowpack with this property, the improved Born 

approximation is probably superior to the empirical equation. For instance, refrozen snow after 

having been wet is a good example. On the other hand, in some cases, the correlation function 

may not be exponential, especially for relatively fresh snow (personal communication with 

Christian Matzler). However, we chose to use the improved Born approximation to predict the 

brightness temperature since it is a physically based model and better represents the GrIS 

especially in the ablation and percolation zones with frequent melt and refreeze cycles.       

4.3.2.3 CROCUS modification  

As stated in Chapter 2, the CROCUS bottom boundary condition was modified to 

add(remove) snow/ice layer to(from) the bottom of the snowpack, to keep the thickness of the 

snowpack about 10 meters at all times.  

4.4 Results and discussion 

In this section, pixel scale and distributed predicted brightness temperatures from MEMLS 

were compared with satellite-measured brightness temperatures. The differences between the 

predicted and measured brightness temperature come from different sources including 1) error 

and uncertainty from satellite sensor, data processing, re-sampling of satellite footprint to 

nominal passive microwave resolution of 25 km, 2) error related to radiative transfer models, 3) 

lack of vertical discretization of snowpack, 4) error in CROCUS physics, 5) error in snow states 
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from CROCUS, and 6) sub-grid heterogeneity. In this section, the effects of snow grain 

parameterization, snow density, sub-grid heterogeneity and uncertainty in snow profile from 

MAR have been investigated. It was hypothesized that the sub-grid heterogeneity plays an 

important role in the differences between the predicted and measured brightness temperature. 

While there is no high-resolution passive microwave brightness temperature data to characterize 

the error, using other high-resolution datasets may help to highlight the effect of sub-grid 

heterogeneity.        

4.4.1 Sensitivity analysis on exponential correlation length 

4.4.1.1 Pixel scale results  

4.4.1.1.1 Simulation results for a sample pixel in the ablation zone  

The snowpack in the ablation zone can be characterized as seasonal snow over solid ice. In 

the ablation zone, especially in the ice sheet margin, a seasonal snow cover melts quickly during 

the melt season and leaves the bare ice exposed. Figure 4.2a shows the passive microwave 

brightness temperature at 36.5 GHz vertical polarization from AMSR-E and the predicted 

brightness temperature using CROCUS-MEMLS for   values of 0.2, 0.3, and 0.4. As can be 

seen, from Figure 4.2a, the measured brightness temperature at 37 GHz V-pol is significantly 

different from the predicted brightness temperature. During the melt period (i.e., May-September) 

the measured brightness temperature shows a significant diurnal cycle, presumably due to the 

presence of liquid water in the snowpack. The predicted brightness temperature for the same 
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period can be divided into two sub-periods, (1) the period in which snow exists over the solid ice; 

during this period, brightness temperature shows diurnal cycle due to melt and refreeze processes, 

(2) the period where bare ice is exposed and melting occurs from the bare ice. The exposed bare 

ice decreases the scattering and as a result, brightness temperature increases. While the AMSR-E 

signal shows diurnal cycles during the second period, the predicted brightness temperature is 

almost constant about 273 K. Differences between predicted brightness temperatures and 

satellite-derived brightness temperatures may be due to sub-grid heterogeneity. The measured 

brightness temperature is an integrated value over the 25 km grid cell with different snow and ice 

features (i.e., snow gullies, ice hummocks, meltwater ponds, impurities) while the modeled 

brightness temperature is from a single ice profile.     

From mid-September 2009, snow starts accumulating over the bare ice and the predicted 

brightness temperature gradually decreases and moves toward the measured value due to an 

increase in snow depth over the solid ice. As can be seen, in Figure 4.2a measured brightness 

temperatures remain relatively constant during the accumulation season. Possible reasons could 

be low precipitation rate, and blowing snow due to katabatic winds. As shown in Figure 4.2a an 

 value of 0.4 better represents the grain size parameterization during the accumulation season. 

Figure 4.2b and Figure 4.2c show the evolution of snow layer density and snow layer 

exponential correlation length at the JAR1 pixel (i.e., pixel that is co-located with the JAR1 

station) for year 2009 and 2010. As can be seen in Figure 4.2b the simulated snowpack melts 

within several weeks during the melt season and bare ice is exposed. The bare ice is less 
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reflective than snow, therefore, the ice surface absorbs more energy and generates more 

meltwater which further reduces the albedo and creates a positive albedo feedback. This 

mechanism is responsible for significant melt in the ice sheet margin as shown in Figure 4.2b.   

 

Figure 4.1 a) The GrIS mask, b) location of JAR2, JAR1, Crawford, X, and Summit stations    
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Figure 4.2 (a) time series of the brightness temperature at 36.5 GHz vertical polarization from AMSR-E and 

CROCUS-MEMLS for 2009 and 2010 at the JAR1 pixel, the red line shows the measured brightness 

temperature from AMSR-E sensor, the green, blue, and magenta lines show the predicted brightness 

temperature from CROCUS-MEMLS using an  value of 0.2, 0.3, and 0.4 respectively, (b) evolution 

of the snow/ice density in kg/m
3
, solid ice shown with dark red color, (c) evolution of the exponential 

correlation length in mm.     

a) 

b) 

c) 
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4.4.1.1.2 Simulation results for a sample pixel in the percolation zone 

In the percolation zone, accumulation exceeds ablation and snow layers accumulate on top 

of the older snowpack from previous seasons. During the melting season, periodic melt-refreeze 

cycles create ice layers, ice lenses, and ice pipes with different shapes and sizes which make the 

snowpack highly heterogeneous. The snowpack heterogeneity is different from location to 

location. For instance, in the low elevations, the snowpack is more heterogeneous than the high 

elevation since melting occurs more frequently and with higher intensity. The snow layers that 

survived from previous melting season create a denser layer called firn. Accumulation of these 

firn layers creates a stratified snowpack with vertical and horizontal heterogeneity. The satellite 

sensor detects both the horizontal and vertical heterogeneity and provides an integrated 

brightness temperature over the footprint of the passive microwave sensor. Note that passive 

microwave penetration depth may vary from a few centimeters to hundreds of meters depending 

on snow wetness, density and microwave frequency [Mätzler 2006]. This complex and 

heterogeneous structure might introduce significant uncertainty in modeled brightness 

temperatures as heterogeneity over the 25 km by 25 km grid cell must be represented by means 

of a single snow profile.        

Figure 4.3a shows the time series of the predicted and measured brightness temperature for 

the pixel encompassing the Crawford station (see Figure 4.1). As can be seen in Figure 4.3a, the 

measured and predicted brightness temperatures are in general agreement from January 2009 to 
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June 2009 and from October 2009 to June 2010 using an   value of 0.2. In the melt season, the 

snowpack experiences melt metamorphism. Liquid water from the melting percolates into the 

snowpack and freezes at certain depths where the temperature is subfreezing. During the freezing 

process, liquid water binds the existing grains together and creates larger grains. The freezing 

process also releases latent heat that can accelerate the constructive metamorphism as an 

effective grain growth mechanism. These mechanisms form a denser snow layer with a higher 

exponential correlation length as shown in Figure 4.3b and Figure 4.3c. Figure 4.3a shows that 

the measured brightness temperature sharply drops in July 2009 and in late August 2010. This is 

more likely due to refreezing liquid water content within the snowpack and exposure of dense 

snow layers (i.e., ice lenses). This is unexpected since the 36.5 GHz vertical polarization is less 

sensitive to ice lenses.  

From September 2009 to May 2010, which corresponds to the accumulation season, the 

measured brightness temperature gradually increases. This anomalous behavior is in contrast 

with the snow scattering property of microwave radiation. The classical pattern assumed that the 

brightness temperature has an inverse relationship with snow depth and frequencies. It is worth 

noting that this classical property of the snowpack has been widely used in SWE retrieval 

algorithms (e.g., Chang et al. 1987). Similar anomalous observations have been reported by 

Rosenfeld and Grody (2000). They reported (1) a positive correlation between the brightness 

temperature and snow depth in the deep Alpine snow, and (2) an increase in the brightness 

temperature in late winter in some locations in Siberia and northern Europe. They suggested that 
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possible reasons for this anomaly could be due to the snow aging and reduction in snow depth 

due to the densification. The modeled brightness temperature from September 2009 to May 2010 

shows a different pattern; it gradually decreases due to the accumulation of new snow on top of 

the old and dense snow layers and then gradually increases after it reaches a minimum in 

December. Fresh snow with small grain size and low density significantly scatters the microwave 

signals and reduces the brightness temperature. An increase in the predicted brightness 

temperature after reaching the minimum value is more likely due to the snowpack densification 

which is similar to the effect of decreasing snow depth (Rosenfeld and Grody 2000) and aging of 

the snowpack while snowfall events temporarily interrupt this increasing trend.  
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Figure 4.3 the same as Figure 4.2 but for the Crawford pixel  

        

a) 

c) 

b) 
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4.4.1.1.3 Simulation results for a sample pixel in the dry snow zone 

Over the dry snow zone, sub-grid heterogeneity is less than the ablation and percolation 

zones and melting typically does not occur or only occurs in a few days period during extreme 

melt years such as 2009 and 2010. As a result, the vertical profile would also be less 

heterogeneous and characterizing the brightness temperature at the measured passive microwave 

scale (i.e. 25 km) using representative snow profile would involve less uncertainty. Figure 4.4a 

shows the time series of measured and predicted brightness temperature over a sample pixel in 

the dry snow zone (the location of the pixel has been marked with X in Figure 4.1b). As can be 

seen, the predicted brightness temperature using an   value of 0.2 is in agreement with the 

measured brightness temperature and the predicted value closely follows the measured 

brightness temperature. Both the predicted and measured brightness temperatures gradually 

decrease during the accumulation season to reach a minimum value and then gradually increase. 

Rosenfeld and Grody (2000) reported that brightness temperature minimum in the middle of 

accumulation season is typical in very cold regions with long winter period and perennial snow. 

For instance, in these regions, brightness temperatures at 36.5 GHz vertical polarization reach a 

minimum around January and then gradually increase after that. This phenomenon is more likely 

due to two competing processes: 1) the growth of ice crystals within the snowpack decreases 

single scattering albedo and makes the snowpack more transparent to passive microwave, which 

leads to an increase in brightness temperature (i.e., this is so-called aging), and 2) accumulation 
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of fresh snow in the beginning of accumulation season, which increases the scattering of the 

microwave signals and reduces the brightness temperature.   

The predicted brightness temperature shows a similar pattern as the measured brightness 

temperature and decreases from July 2009 to early December 2009 and increases from December 

2009 to May 2010. The decrease in brightness temperature is associated with the accumulation of 

fresh snow and the increase in brightness temperature is more likely due to the aging of the 

snowpack. Figure 4.4b and Figure 4.4c show the time evolution of the snowpack density and the 

snowpack exponential correlation length over the two-year period. During the melt season due to 

the increase in temperature and few melt events, the snowpack experiences different 

metamorphism mechanisms. While the metamorphism processes significantly influence the grain 

size and the exponential correlation length (Figure 4.4c), these mechanisms do not considerably 

affect the density of the snowpack (Figure 4.4b). The difference between the density profiles 

(Figure 4.3b and Figure 4.4b) can be a potential reason for the difference between the brightness 

temperatures after the melt period in the percolation and the dry snow zones.   

In this section, time series of the predicted brightness temperatures for three pixels (JAR1, 

Crawford, pixel X) in the different mass balance zones (Figure 4.1) were compared with 

satellite-derived brightness temperatures from AMSR-E. These pixels show general structures of 

snow and ice profiles in the different mass balance zones. It was also hypothesized how these 

structures potentially affect the predicted brightness temperatures. However, there is significant 

uncertainty in the predicted brightness temperatures and it is almost impossible to generalize the 
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results obtained from the sample pixel in each mass balance zone to all pixels in that zone. 

 

 

 

 

Figure 4.4 the same as Figure 4.2 but for the pixel X at the dry snow zone        

a) 

b) 

c) 
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4.4.1.2 Distributed results   

Snow grain size plays a key role in many radiative transfer models. In MEMLS, the 

exponential correlation length is used to describe the snow grain size. A commonly used 

empirical equation utilizes a proportionality constant (i.e.,  ) to relate the grain size or optical 

grain diameter to the exponential correlation length. A more physically based model (Eq. 4.2) 

uses a volumetric fraction of ice to compute the exponential correlation length.  

In many studies, the  value has been determined by minimizing the error between the 

predicted and the measured brightness temperature. This can be achieved by tuning the grain size 

model parameters (e.g., Durand et al., 2008) or by tuning the   value (e.g., Brucker et al., 

2011). An overview of the previous studies shows that these methods have been generally used 

(1) in a small site equipped with a ground-based radiometer (Durand and Margulis 2008), (2) for 

the seasonal snowpack, and (3) during the winter when the snowpack is dry (e.g., Durand et al., 

2008; Durand and Margulis 2008; Ally et al., 2011, Rees et al., 2010). It can be argued that over 

the GrIS it would be very difficult if not impossible to apply the same methodologies due to the 

following reasons: (1) A satellite-based passive microwave measurement is an aggregated 

brightness temperature over the 25 km by 25 km grid cell while the footprint of ground-based 

observation is more closely related to snow profiles from snowpits, hence, it is less likely to 

achieve the same accuracy which has been reported using ground-based measurements. (2) Wet 

snow acts like a black body, therefore in almost all studies passive microwave has been utilized 
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during the dry period to estimate SWE or snow depth; however, in order to estimate the surface 

mass fluxes over the GrIS, passive microwave must be used during both the dry and melt period. 

While during the melt period the modeled brightness temperature shows a constant value of 

~273K, the measured brightness temperature is much smaller (i.e. ~260 K). One possible reason 

could be sub-grid heterogeneity. This large bias between the modeled and measured values is 

another issue that needs to be considered. (3) Results from different studies show that model 

parameters (e.g.,  ,  ) are site specific and the parameters obtained from one site cannot 

necessarily be applied to other sites. (4) The snow/ice profiles over the GrIS are very 

heterogeneous and complex. The profiles are influenced by many meteorological and 

geographical parameters among other including temperature, wind speed, precipitation intensity, 

precipitation type, melt intensity, melt period, latitude, and elevation (e.g., Kokhanovsky, 2011). 

While snow profiles over the GrIS can be classified into three general categories based on the 

GrIS mass balance zones, snow profiles within the same mass balance zone, but from different 

elevations, are significantly different. Therefore, based on these reasons, it would be very 

difficult to find an optimum  value even for the pixels in the same mass balance zone.  

In this chapter, MEMLS was run for three different  values of 0.2, 0.3, and 0.4 and the 

results were compared with the satellite-derived brightness temperature. This experiment would 

help to assess the possibility of using a constant   value over the different mass balance zones. 

Then a density dependent  value (Eq. 4.2) was implemented to further investigate the effect of 

the density dependent on the predicted brightness temperature.      
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As shown in Figure 4.2a over the ablation zone where the bare ice is exposed during the 

summer, snow grain parameterization (i.e.,  ) does not play any role in the observed 

discrepancy between the predicted and measured brightness temperature. Error and uncertainty 

from input variables and sub-grid heterogeneity are likely responsible for the observed 

discrepancy. Table 4.1 shows the spatial mean RMSE and bias using different   values for the 

different mass balance zones. Over the ablation zone, using an  value of 0.4 leads to the lower 

bias and RMSE in comparison with other  values for the both 2009 and 2010. However, the 

large RMSEs indicate that the predicted brightness temperature contains significant error and 

uncertainty which makes the use of this data in a retrieval algorithm or a data assimilation 

framework disputable. Note that the RMSE and bias presented in Table 4.2 are an integrated 

value and represent all sources of error and uncertainty.  

From Table 4.1, in the percolation zone close to the ice sheet margin using an  value of 0.4, 

the predicted brightness temperature better matches the measured value. Nevertheless, moving 

from the margin toward the ice sheet interior, a smaller   value provides a better match 

between the predicted and measured brightness temperature. In addition, obtaining an optimum 

  value is also subject to the inter-annual variability of the snowpack properties. For instance, 

in the percolation zone for year 2009 an  value of 0.3 shows a bias of 5 K while for year 2010 

using an   value of 0.4 provides a low bias of -5 K (see Table 4.1). However, the spatial mean 

RMSE of the predicted brightness temperature in this zone is about 27 K for both  values of 

0.3 and 0.4. As shown in Figure 4.3b-c, during the melt period, snowpack experiences significant 
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changes in grain size, density, and snow stratigraphy. These changes contribute to significant 

differences between the predicted and measured brightness temperature after the melt period and 

consequently lead to a large RMSE observed in this zone. It is clear that this uncertain data 

cannot be used in a data assimilation system. An inspection of the time series of brightness 

temperature for several pixels in the percolation zone using   values of 0.2, 0.3, and 0.4 shows 

that the predicted brightness temperature is very sensitive to the exponential correlation length. 

The sensitivity of the predicted brightness temperature to the layer exponential correlation length 

is about -0.4 K per percentage increase in the exponential correlation length. 

Table 4.1 shows that over the dry snow zone, an   value of 0.2 provides better results. 

Similar to the percolation zone an inspection of the time series of brightness temperature for 

several pixels using different   values revealed that the sensitivity of the predicted brightness 

temperature to the layer exponential correlation length in the snow dry zone is about -0.4 K per 

percentage increase in the exponential correlation length. In this zone, while, the spatial mean 

bias of the predicted brightness temperature shows a low value of -3 K, the spatial mean RMSE 

is 24 K and 15 K for 2009 and 2010 respectively.   

Figure 4.5 and Figure 4.6 show the spatial RMSE and bias for different   values for year 

2009 and 2010. It is clear that using a smaller   value is more suitable for the GrIS interior (i.e. 

the dry zone) where the grain size can be characterized with a smaller exponential correlation 

length. Comparing the RMSE and bias maps from year 2009 and 2010 illustrates the inter-annual 

variability of the predicted and measured brightness temperature. For instance, a comparison 
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between Figure 4.5a and Figure 4.5d shows that while an   value of 0.2 leads to a very small 

RMSE in the interior area of the GrIS in 2010; using the same   value leads to a large RMSE 

in the same area in 2009. A further comparison between the RMSE and bias maps of the different 

  values for the same year shows the spatial variability of the predicted brightness temperature 

due to the change in exponential correlation length. For instance, a comparison between Figures 

4.6d, e, and f shows that a smaller   value leads to a lower bias in the GrIS interior while a 

larger   value leads to a smaller bias in the GrIS margin. However, there is no distinct 

boundary between these regions and   values need to be adjusted based on snow properties 

and geographical information (i.e. latitude and elevation) to reduce the error due to imperfect   

value while the error from other sources could be a reason for the differences between the 

predicted and measured brightness temperatures.     

 

Table 4.1 The spatial mean RMSE and bias of 36.5 GHz vertical polarization in [K] using different   values 

over the different mass balance zones for years 2009 and 2010 

  2009 2010 

   =0.2  =0.3  =0.4  =0.2  =0.3  =0.4 

RMSE 

Ablation zone 40 35 34 36 29 27 

Percolation zone  33 27 27 35 27 27 

Dry zone  24 34 46 15 23 37 

Bias 

Ablation zone 36 24 10 32 21 7 

Percolation zone  20 5 -10 27 11 -5 

Dry zone  -17 -31 -44 -3 -19 -35 
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Figure 4.5 The RMSE of the predicted brightness temperatures at 36.5 GHz vertical polarization relative to the 

measured values in [K] using different   values for years 2009 and 2010, (a) the RMSE for  =0.2, 

(b) the RMSE for  =0.3, (c) the RMSE for  =0.4, the second row is the same as the first row but for 

year 2010.    
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Figure 4.6 the same as Figure 4.5 but for the bias in [K] 
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To further evaluate the effect of  , the grain size parameterization using a constant   

value was replaced with a density depended   (i.e., Eq. 4.2) and MEMLS was integrated in 

time for the sample pixels. As shown in Figure 4.7 the predicted brightness temperature is very 

similar to that of the constant   with a value of 0.4. The   value obtained from (Eq. 4.2) 

ranges from 0 to 0.4 for an ice layer and a typical new snow layer with a density of 150 kg/m3 

respectively. However, note that the brightness temperature is an integrated value over the 

surface layers up to an unknown penetration depth. The results (Figure 4.7) show that the 

unknown penetration depth is more likely limited to the low-density layers which yields to an   

value of about 0.4. It would be instructive to further investigate the reasons for the similarities 

between the results from a constant and density dependent   values. However, these 

similarities and correlation between the predicted brightness temperatures from two 

parameterizations of grain size might be an indication that density-dependent grain size 

parameterization is overly simplified and does not adequately represent the temporal variation of 

brightness temperature.      

To the best of my knowledge, no study has been done to characterize the error and 

uncertainty of the CROCUS snow grain parameters. Thus, it should be emphasized that for the 

further application of CROCUS-MEMLS system (1) more efforts are needed to characterize 

error and potentially improve the estimates of grain size parameters; (2) a physically based   

value should be developed to take into account the spatial and temporal variability of the grain 

size parameters using snow layer properties. Treating the   value as a random variable and 
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estimating that using a data assimilation scheme could be a potential solution for this issue.      

 

 

 

Figure 4.7 Time series of brightness temperatures at 36.5 GHz vertical polarization using a constant and a 

density depended   values, (a) for the JAR1 pixel, (b) for the Crawford pixel, (c) for the pixel X in 

the dry snow zone. The magenta, blue, green, and black lines represent the results for an value of 

0.2, 0.3, 0.4 and a density depended  value respectively.        

a) 

b) 

c) 
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4.4.2 Sensitivity analysis on layer density 

The sensitivity of brightness temperature to snow density was investigated by repeating the 

baseline simulation (i.e., using snow profile from CROCUS outputs and a constant   value of 

0.2 to compute the exponential correlation length) for different snow density. The snow layer 

density multiplied by a factor ranging from 0.75 to 1.25. Results show that for the sample pixel 

in the ablation zone the predicted brightness temperature does not change by changing the 

density of the shallow snowpack over the solid ice (Figure 4.8a). This is mainly due to the fact 

that the density of snowpack is about 150 kg/m3 (Figure 4.2a) and by multiplying the density by 

a factor of 0.75 or 1.25 the total density does not change significantly to change the predicted 

brightness temperature. Therefore, it can be inferred that changes in the brightness temperature 

shown in Figure 4.2a are mainly due to changes in the exponential correlation length.  

For the pixel in the percolation zone, there is a direct relationship between the density and 

brightness temperature (Figure 4.8b). An inspection of the time series of brightness temperature 

for several pixels in the percolation zone revealed that the sensitivity of the brightness 

temperature to the layer density is about 0.2 K per percentage increase in the layer density. 

Similar to the percolation zone, in the dry snow zone the brightness temperature increases with 

increasing density (Figure 4.8c). Similar inspection showed that the sensitivity of brightness 

temperature to density is about 0.2 K per percentage increase in the layer density, which is much 

smaller than the sensitivity of brightness temperature to exponential correlation length.  
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Figure 4.8 Sensitivity analysis on layer density using brightness temperature at 36.5 GHz vertical polarization, 

(a) for the JAR1 pixel, (b) for the Crawford pixel, (c) for the pixel X in the dry snow zone. The red line 

shows the measured brightness temperature, and the cyan, blue, black, green, and magenta lines show 

the predicted brightness temperature by multiplying the layers density by a factor of 0.75, 0.9, 1, 1.1, 

and 1.25 respectively and using a constant  value of 0.2.  

 

b) 

c) 

a) 
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4.4.3 The effect of sub-grid heterogeneity 

Passive microwave brightness temperatures from AMSR-E are available at a spatial 

resolution of 25 km. The native spatial resolution (i.e., footprint) of these dataset depends on 

frequency and changes from about 5.4 km (89 GHz) to 56 km (6.9 GHz). Many studies (e.g., 

Kelly et al. 2003; Durand and Margulis 2006; De Lannoy et al., 2010) have highlighted that there 

are significant error and uncertainty in satellite-derived passive microwave brightness 

temperatures due to coarse spatial resolution of these datasets. However, it is very difficult to 

characterize the uncertainty of passive microwave brightness temperature due to the lack of 

availability of high-resolution dataset. 

A comparison between high-resolution satellite-derived datasets like IST and albedo with 

coarse-resolution datasets (i.e., spatially aggregated data) could provide some insight about how 

aggregation can potentially introduce error and uncertainty into coarse-resolution passive 

microwave brightness temperature measurements. Here, high-resolution IST measurements were 

used to show the effect of sub-grid heterogeneity. Figure 4.9a-c shows fine resolution IST over 

the GrIS. A comparison between Figure 4.9b and Figure 4.9c shows that the variation of IST 

within a passive microwave resolution of 25 km is between 5-10 K. For the JAR1 and JAR2 

stations the difference between the high-resolution IST temperature (Figure 4.9b) and aggregated 

IST at the co-located pixel (Figure 4.9c) is about 1-2 degree. A similar analogy can be made 

about aggregation of passive microwave brightness temperature at satellite sensors. Furthermore, 

IST data shows the sub-grid heterogeneity of the ice surface and does not provide any 
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information about subsurface heterogeneity while passive microwave can detect the vertical 

heterogeneity of the snowpack and measured brightness temperatures are an intergraded value 

that represents both the vertical and horizontal heterogeneity of the snowpack. This vertical 

heterogeneity makes the error structure of coarse-resolution passive microwave brightness 

temperature very complex. In general, it can be hypothesized that the valuable information of the 

passive microwave data that is directly related to the GrIS mass flux is lost through the 

aggregation at the sensor.          
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Figure 4.9 a) high-resolution IST for Feb 15, 2009, b) variation of IST in the rectangular area in (a)     

4.4.4 Issues related to MAR snow profiles  

MAR provides initial condition and forcing variables as inputs to the CROCUS snow model. 

Initial profile and forcing variables from the large-scale regional climate model are subject to 

errors and uncertainties. Different snow profiles were examined to detect possible errors in MAR 

outputs. The MAR issues are briefly summarized below.  

a) b) c) 
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Unusual first layer thickness and density: Figure 4.10a-b show the thickness and density of 

the first snow layer from MAR. As can be seen, the thickness of the first snow layer is very large 

and in some pixels it exceeds one meter. Similarly, the density of the first layer is about 300 

kg/m3. These issues can be mitigated by performing a model spin-up. A one-year model spin-up 

can effectively remove the anomalies observed in the first layer thickness and density. However, 

it is hard to know whether the snow profile is in a steady state condition after one-year spin-up or 

not. Predicted brightness temperatures from the CROCUS-MEMLS for sample pixels were 

closely investigated. The results show that, in some pixels in the dry snow zone, there is a large 

negative bias between the predicted and measured brightness temperatures at the beginning of 

the simulation. The bias gradually decreases over time and the predicted value moves toward the 

measured value. The reason why this occurs in the dry zone could be due to the fact that the 

snowpack in the dry zone has a longer memory than the other two zones. In the ablation zone, 

the snowpack memory resets every year after the snowpack completely melts. In the percolation 

zone, during the melt period, liquid water could obscure the microwave signal emitted from deep 

and old layers (i.e., no memory effect). During the dry period ice layers and layers with higher 

density could potentially reduce the penetration depth and the influences of the older snow layers 

from previous snow seasons. Over the dry zone, the penetration depth of the 37GHz channel 

reaches to more than one meter for a typical snowpack (i.e., T=270 K,  =300kg/m3, ex
P =0.3 

mm) (Matzler 2006). Therefore, snow layers from the previous snow seasons, which come from 

MAR through the initial condition, could influence the microwave signals. Note that inspection 
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of snow profile for several pixels in the dry snow zone show that the average accumulation rate 

during 2009-2010 is ~0.5 m/year (see Figure 4.4c). Over time, accumulation of new snow 

reduces the impact of old layers and gradually resets the memory of the snowpack.  

 

Figure 4.10 a) MAR surface layer thickness in [m], and b) MAR surface layer density in [kg/m
3
]  

 

Figure 4.11 Predicted and measured brightness temperatures at 36.5 GHz vertical polarization at the Summit 

pixel, The red line show the measured brightness temperature and the green and blue lines show the 

predicted brightness temperature for 1-year and 3-yr spin-up period using an  value of 0.2. 
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A simple experiment was conducted to explore the effect of the duration of spin-up on the 

predicted brightness temperature. As stated before, for all simulations, a one-year spin-up was 

performed to eliminate the anomalies of the layer thickness and layer density from MAR. 

However, it appears that in some cases a one-year spin-up is not enough to reach the quasi-steady 

state condition; hence, the spin-up period was increased to 3 years. Figure 4.11 compares the 

effect of one-year and three-year spin-up on predicted brightness temperature for the pixel that 

encompasses the Summit station (Figure 4.1). As can be seen, this extra step can reduce the bias 

and potentially improve the predicted brightness temperature. Figure 4.12 show the initial snow 

profile after a one-year and three-year spin-up period. As can be seen, the layer temperatures 

from both simulations are the same. Layer densities are similar in the top 1.7 meters but 

gradually diverge after that. Optical grain diameters from these two simulations are slightly 

different. These differences are likely to be responsible for the differences between the one-year 

and three-year spin-up cases. It is worth noting that while the three-year spin-up performs better 

than the one-year spin-up, especially in some pixels over the dry snow zone; the duration of 

spin-up is still an open question. 
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Figure 4.12 initial snow profile for the pixel that encompasses the Summit station. a) temperature in [ºC], b) 

density  in [kg/m
3
], and 3) optical grain diameter (Dopt) in [mm]. The blue and red lines represent the 

snow states for a one-year and a three-year period.   

Uniform hourly precipitation rates: The MAR version 2 hourly precipitation contains an 

artifact whereby most precipitation values have a value of 1 mm/hr (Figure 4.13). This 

precipitation artifact might have a negative impact on albedo, brightness temperature, and mass 

and energy balance of the GrIS. A simple mitigation could be to compute the daily precipitation 

and apply that to a randomly selected hour of the corresponding day. Results from several sample 

pixels shown in Figure 4.14a-c. For the pixel in the ablation zone, there is no difference between 

the brightness temperatures from two different precipitation patterns. For the pixel in the 
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percolation and dry snow zones, daily precipitation leads to lower and higher brightness 

temperature during the accumulation season. These differences are likely due to 1) changes in 

layering structure because imposing daily precipitation in one hour forces the CROCUS to 

change the layer structure to accommodate new snow layers in one time step and 2) changes in 

precipitation pattern and consequently grain size parameters. However, it is very difficult to 

diagnose the main reason for these changes in brightness temperatures.  

It seems that this precipitation pattern is an artifact in MAR version 2. Using real 

precipitation pattern would contribute to a better understanding of the optical behavior of surface 

layer (i.e., albedo and brightness temperature) which is highly influenced by snow grain size 

parameters.   

 

Figure 4.13: MAR hourly precipitation in [mm] for 2010, a) for the JAR1 pixel, b) for the Crawford pixel, c) 

for the pixel X.    



142 

 

Ice layer grain parameters: it seems that MAR uses relatively large values to describe the 

grain size of the ice layers (e.g. sphericity of 98[-] and grain size of 9.9 mm). The optical grain 

diameter obtained using these values is very large (i.e. 9.9 mm) (See Figure 4.2c). Such a large 

grain size has not been reported in the literature. The effect of this large optical grain size was 

investigated by replacing the exponential correlation length (which is the product of an  value 

of 0.2 times the optical grain diameter) with the maximum reported value of 0.71 mm (for 

coarsest grains) and 0.33 mm (for depth hoar) (e.g., Mätzler and Wiesmann 1999). There are no 

significant differences between the brightness temperatures by running MEMLS using these 

adjustments in the grain size for the sample pixels in each mass balance zone (Figure 4.15a-c). It 

could be due to the fact that the maximum reported value of 0.71 mm and 0.33 mm were used to 

replace the large exponential correlation length. However, MEMLS is very sensitive to grain size 

and caution must be taken in the future application of ice profile with such a large grain size.  
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Figure 4.14 Comparison between the predicted brightness temperatures at 36.5 GHz vertical polarization 

using daily and hourly precipitation (a) for the JAR1 pixel (in the ablation zone), (b) for the Crawford 

pixel (in the percolation zone), and (c) the pixel X in the dry snow zone. The blue line shows the 

brightness temperature for the case that daily precipitation randomly assigned to one hour and the 

green line shows the results for the hourly precipitation (baseline simulation), and the red line shows 

the AMSR-E brightness temperature. 

a) 

b) 

c) 
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Figure 4.15 Comparison between the brightness temperature at 36.5 GHz vertical polarization by adjusting 

the ice layer grain size using an value of 0.2 for different pixels (a) for the JAR1 pixel (in the ablation 

zone), (b) for the Crawford pixel (in the percolation zone), and (c) for the pixel X in the dry snow zone. 

The blue and magenta lines show the predicted brightness temperature for the cases that ice layer 

grain size have been adjusted to 0.71 mm and 0.33 mm and the green line shows the baseline 

simulation and the red line shows the measured brightness temperature from AMSR-E.      

a) 

b) 

c) 
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4.5 Summary  

This chapter was an effort to briefly review the different applications of the passive 

microwave in the cryosphere and to understand the limitations associated with the application of 

passive microwave signals in a data assimilation framework. The main challenge in passive 

microwave radiance assimilation is the differences between the satellite-derived brightness 

temperatures and predicted brightness temperature using a measurement model (e.g., in this case, 

MEMLS). These errors and uncertainties come from different sources, for instance, errors in 

snow states from CROCUS can potentially degrade the predicted brightness temperatures. In 

addition, sub-grid heterogeneity is likely to be an important source of error in predicted 

brightness temperature which has not been properly investigated. Moreover, error in 

satellite-derived brightness temperatures (e.g., horizontal and vertical aggregation at satellite 

sensor) is another possibility for the differences between the measured and predicted brightness 

temperatures. Finally, error in grain size parameterization is another source of error in predicted 

brightness temperature that leads to the differences between the predicted and measured 

brightness temperatures. The sensitivity results showed that errors in the predicted brightness 

temperature are not a simple function of density and grain size, which can be reduced by 

adjusting the grain size parameters. The metamorphism mechanisms, especially during the melt 

period have a significant impact on the snowpack structure and snow properties. These changes 

cannot adequately be represented by the current parameterization of grain size (i.e., Eq. 4.2). 

While the accuracy of the grain size estimate needs to be improved the grain size 
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parameterization should also adequately represent the metamorphism mechanisms (i.e., change 

in layer structure, temporal and spatial variations of grain parameters). Furthermore, using 

passive microwave data in their native resolutions (i.e., footprint resolution) which are smaller 

than the EASE-Grid resolution for the 36.5 and 89 GHz channels could be a potential solution to 

reduce the error and uncertainty of the measured brightness temperature (e.g., Li et al., 2015a,b). 

Moreover, future investigation should also benefit from higher resolution RCM outputs to 

provide better estimates of snow profiles over the GrIS. 
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5 Conclusion and Future Work  

5.1 Conclusion and original contribution  

The three studies described above were conducted to: (1) examine the feasibility of 

improving a priori regional climate model estimates of the Greenland ice sheet (GrIS) surface 

mass loss through assimilation of synthetically generated ice surface temperatures; (2) apply the 

developed methodology using the satellite-derived ice surface temperature data to characterize 

the GrIS surface mass fluxes; (3) assess the possibility of extending the methodology to the 

passive microwave brightness temperature. This dissertation addresses the following overarching 

question: Can incorporation of remote sensing observations overcome significant uncertainties 

and biases in surface mass flux estimates from a regional climate model? A combination of pixel 

scale and spatially distributed experiments in the context of synthetic and real experiments were 

conducted to address this question.             

In chapter 2, the performance of the proposed EnBS methodology was investigated within 

an OSSE framework using synthetically generated ice surface temperature measurements. Our 

analysis showed that error in forcing variables is responsible for most of the uncertainty in the 

GrIS surface mass fluxes. The EnBS reduces the uncertainty of the posterior estimates of forcing 

variables and effectively removes any of the prior biases. The information content in the ice 

surface temperature contributes an integrated sum of 452 (MJ/m2/year), 375 (MJ/m2/year), 14 

(ºC-day), and 257 (ºC-day) to correct the shortwave, longwave, PPD, and NDD. Our findings 

showed that the data assimilation framework improves the RMSE of the posterior estimates of 
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runoff, sublimation/evaporation, surface condensation and surface mass loss fluxes by 61%, 64%, 

76%, and 62%, respectively, over the nominal a priori climate model estimates.  

In chapter 3, the satellite-derived ice surface temperature data was integrated into a priori 

snow/ice model estimates to generate reanalysis estimates of the GrIS surface mass fluxes. It was 

illustrated that the data assimilation framework removes both positive and negative biases in the 

prior estimates of the surface temperature. It was also showed that the posterior surface 

temperatures from the EnBS framework are in better agreement with the satellite–derived IST in 

comparison with the prior surface temperatures. Verification of snow state (i.e. surface 

temperature) is important and straightforward, but it is not sufficient. Verification of surface mass 

fluxes is a critical part of this study, but heavily limited by the lack of suitable verification 

datasets. The melt extent and melt duration from the AMSR-E data using the well-known DAV 

method were compared with the melt extent and melt duration from the prior and posterior 

simulation. While the time series of melt extent from AMSR-E are in agreement with the time 

series of the prior and posterior estimates of the melt extent from CROCUS, similarities between 

the prior and posterior estimates indicate that the melt extent and melt duration are bulk metrics 

and they are not adequate to assess the data assimilation results.   

Pixel-scale surface mass balance estimates were also compared with the point scale in situ 

surface mass balance measurements (van de Wal et al., 2012) along the K-transect. The posterior 

estimate of the surface mass balance in the pixels that are co-located with the SHR and S10 

stations are in good agreement with the point scale in situ measurements. But both the prior and 
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posterior simulations fail to properly estimate the SMB in the pixels that co-located with the S6, 

S7, and S8 stations. This is more likely due to the positive albedo feedback in these pixels, which 

are located in the GrIS dark zone. The presence of liquid water in different forms significantly 

decreases the albedo and enhances surface melt which is a possible reason for the difference 

between the predicted and measured SMB in the S9 station.          

In chapter 4, CROCUS was coupled with MEMLS to evaluate the possibility of 

incorporation of passive microwave data into the developed algorithm. The measured brightness 

temperatures were compared with the predicted brightness temperatures for both the dry and 

melt periods. Significant bias and uncertainty between the predicted and measured values are 

from different sources including error in states variables from CROCUS, error due to sub-grid 

heterogeneity, error in satellite sensor, error in data processing operations, error in MEMLS 

physics and grain size parameterization. Characterizing error and uncertainty from all sources is 

important but, beyond the scope of this study. Here, uncertainty of predicted brightness 

temperatures due to error in snow states and grain size parameterization was investigated. It was 

found that, besides the error from above mentioned sources grain size parameterization is an 

important source of error in predicted brightness temperatures. It is especially important in the 

percolation zones where the metamorphism mechanisms significantly impact the snowpack 

structure. It was hypothesized that the current parameterization of the grain size in 

CROCUS-MEMLS system (i.e. Eq. 4.2) is unable to take into account the metamorphism 

mechanisms especially in the percolation zone. Further development of the exponential 
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correlation length should integrate the knowledge of the metamorphism processes into the 

current parameterization of grain size. Inconsistency between the predicted and measured 

brightness temperatures during the melt period in the ablation zone is another important issue 

that needs to be addressed. In the ablation zone, the role of grain size parameterization is 

minimal especially where bare ice is exposed and melting occurs from the bare ice. In this zone, 

the possible reason for the differences between the predicted and measured brightness 

temperatures is sub-grid heterogeneity. The coarse resolution of both satellite-derived 

measurements and predicted measurements are probably responsible for this inconsistency. 

Therefore, using techniques to downscale the measured brightness temperatures and also using 

high-resolution RCM outputs would contribute to reducing the differences between the predicted 

and measured brightness temperatures. In addition, snow layer density plays an important role in 

predicted brightness temperatures; accurate estimates of layer density would reduce the error and 

uncertainty of the predicted brightness temperatures.     

In summary, it was shown that IST measurements contain valuable information that can be 

exploited by a data assimilation framework to improve the estimates of the GrIS surface mass 

loss. This study supports the conclusion that coarse resolution passive microwave brightness 

temperature with current grain size parameterization cannot be used in a data assimilation 

framework to improve the GrIS surface mass loss.  

Several important caveats include: 1) clouds introduce error into IST measurements leading 

to errors in surface mass loss estimates. 2) It has been reported that IST measurements suffer 
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from cold bias. This bias could impact the posterior estimates of mass fluxes, especially during 

the melt season. 3) In the assimilation of IST, the predicted IST should be available at the 

measurement time. However, the acquisition time of the IST product is 17:00 ± 1:00 UTC. This 

2-hour range would introduce uncertainties in the posterior estimates of the surface mass fluxes. 

These caveats highlight the need for future work to further develop the methodology and take 

advantage of the other relevant remotely sensed data. 

5.2 Future work  

Future work should focus on extending this methodology to generate a reanalysis surface 

mass balance of the GrIS. The steps in moving toward this goal include: 1) improving the 

CROCUS albedo and meltwater production schemes; 2) integrating other RS data such as albedo 

and radar altimetry data into the framework to further constrain the GrIS SML; 3) using other 

data assimilation techniques to further evaluate the information content of the IST measurements; 

4) further evaluating the method using independent datasets including in situ measurements and 

airborne data; 5) generating a posteriori estimates of precipitation to provide a complete picture 

of the GrIS surface mass balance; 6) obtaining forcing variables from high-resolution regional 

climate models or downscaling the forcing variables to the scale of IST data (i.e. 1.5 km).  

The modularity of data assimilation techniques makes it possible to combine nearly any land 

surface model with multi-scale, multi-resolution satellite-based or ground-based measurements. 

Therefore, extending the developed algorithm to extract the information content of other remote 

sensing data such as MODIS albedo, radar altimetry data, and Gravity Recovery and Climate 
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Experiment (GRACE) data would help to further constrain the GrIS SMB. Furthermore, the 

developed methodology can be used in other locations such as ice caps and high altitude glaciers 

to estimate different components of the mass balance (i.e. runoff, sublimation, evaporation, and 

condensation).          
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