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Review article

*T. TANIGAWA, *R. PAL ‘T. ARAKAWA, ‘K. HIGUCHI, *A.S. TARNAWSKI

TGF-B SIGNALING PATHWAY: ITS ROLE IN GASTROINTESTINAL
PATHOPHYSIOLOGY AND MODULATION OF ULCER HEALING

*Medical Services, Department of Veterans Affairs Medical Center, Long Beach, California and the
Department of Medicine, University of California, Irvine, California, USA;
"Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan

Gastrointestinal ulcer healing is a complex process, involving cell migration,
proliferation, angiogenesis and extracellular matrix deposition, all ultimately leading
to reconstruction of tissue architecture within the ulcer scar. These processes are
controlled by growth factors, cytokines and hormones. Transforming growth factor-
B (TGF-P), one of the multifunctional peptide growth factors, has been reported to
positively regulate gastrointestinal ulcer healing. Although TGF-B inhibits cell
proliferation in a variety of cells, it induces cell migration, angiogenesis, and
enhances extracellular matrix production necessary for gastrointestinal ulcer healing.
TGF-B exerts its action by binding to its transmembrane serine/threonine kinase
receptors, which in turn triggers activation of various intracellular signaling
pathways. Smads are intermediate effector proteins that play key roles in biological
activities of TGF-P by transmitting the signals from the cell surface directly into the
nucleus and initiating transcription. New insight into the mechanisms underlying
TGF-B-Smad modulation of gastrointestinal ulcer healing will likely enhance our
understanding of the mechanisms controlling the healing processes of
gastrointestinal ulcers.
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INTRODUCTION

Ulcer in gastrointestinal tract develops as a result of imbalance between
mucosal defensive (protective) factors such as mucosal blood flow, ischemic
preconditioning, nitric oxide and prostaglandin generation, growth factors,
ghrelin and others, and aggressive factors such as HCI, pepsin, bile acids and
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others (1-4). Ulcer healing is a complex process, involving cell migration,
proliferation, angiogenesis and extracellular matrix deposition, all ultimately
leading to scar formation (5-8). All these processes are controlled by growth
factors such as epidermal growth factor (EGF), transforming growth factor-o
(TGF-a), basic fibroblast growth factor (bFGF), trefoil peptides (TP), platelet-
derived growth factor (PDGF) and a variety of cytokines (6-9).

Transforming growth factor-f (TGF-f) is a multifunctional cytokine that
regulates many diverse cellular processes including proliferation, apoptosis and
differentiation. TGF-f is known to play a central role in different stages of wound
healing (10). TGF-P is also reported to positively regulate gastrointestinal ulcer
healing, but little is known about the precise role of TGF-f in healing process.
This review summarizes recent advances in the understanding of the mechanisms
underlying TGF-$ modulation of gastrointestinal ulcer healing.

TGF-P3

TGF-B is a 25-kDa disulfide-linked homodimeric peptide. Three mammalian
isoforms (TGF-B1 -B2 and -B3) have been identified that share a 64-85% amino
acid sequence homology. TGF-B1 is the prevalent form and found almost
ubiquitously (reviewed in 11, 12). Other isoforms are expressed in a more limited
variety of cells and tissues. The gene encoding TGF-B1, -B2 and -3 are located
in 19q13, 1g41 and 14q24, respectively. While TGF-3 stimulates proliferation of
fibroblasts (13), it inhibits cell proliferation in a variety of cells (e.g. epithelial
cells and endothelial cells).

TGF-B is synthesized as a large precursor that is subsequently cleaved. The
cleaved pro-region known as the latency-associated peptide (LAP) has been
shown to remain non-covalently associated with the mature peptide to form a
latent TGF-B1 complex, also known as the small latent complex (SLC). SLC is
secreted and undergoes further processing in the extracellular matrix, which
involves proteases such as plasmin, integrin-ovf36, mannose-6-phosphate
receptors, plasmin, matrix metalloproteinase-2 and -9, thrombospondin-1, and
cathepsin D.

TGF-B SIGNALING PATHWAY

TGEF- elicits its cellular response by binding to heteromeric complex of type I
and type Il serine/threonine kinase transmembrane receptors, which in turn
activates multiple downstream signaling pathways resulting in several distinct
effects (Figure 1). The first intracellular mediator of TGF-B signaling, Smad
[ortholog of mothers against dpp (MAD) first identified in Drosophila] (14),
transduces the TGF-[3 signal from the plasma membrane to the nucleus and play key
roles in biological activities of TGF-B. Among the three classes of Smads, only
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Fig. 1. TGF-P signaling pathways. Classically, TGF-f binds to type II receptor on cell membrane,
which induces the formation of type I receptor and type II receptor complex. Type II receptor
phosphorylates the GS domain of type I receptor. The activated type I receptor then specifically
phosphorylates Smad2/3. Phosphorylated Smad2/3 form complexes with Smad4. This Smad complex
translocates into the nucleus and participates in transcriptional regulation. Recently, it has been shown
that cross-talk between other pathways modulate TGF-B-Smad signaling pathway, which include
MAPK, Wnt and p53 pathways.

receptor-regulated Smads (R-Smad) are directly phosphorylated and activated by
type I receptor kinases. Among the multiple intracellular signaling pathways
activated, Smad signaling pathway is relatively well elucidated (reviewed in 11,
12). Type III receptors containing a proteoglycan and a glycoprotein known as
betaglycan and endoglin, likely modulate activity by regulating ligand access to
type I and type II receptors, without transducing signal by itself.

Type I and type II receptors are known to act in a sequence to exert the TGF-f3
signal. First, TGF-P binds to type II receptor, which in turn recruits the cognate
type I receptor into the complex. Once the complex is formed, type II receptor
kinase phosphorylates glycine- and serine-rich juxtamembrane regions within type
I receptor called the GS domain, resulting in induction of kinase activity of type I
receptor. The activated type I receptor then specifically recognizes and
phosphorylates R-Smad, which include Smad2 and Smad3. In the basal state, R-
Smads can bind several proteins including SARA (Smad anchor for receptor
activation) (Figure 1). SARA presents R-Smads as substrates to the activated
TGF-B receptor complex and their phosphorylation decreases the affinity of R-



Smads for SARA. Once released from SARA, phosphorylated Smad2/3 form
complexes with Smad4, which is called co-mediator Smad (Co-Smad). This
Smads complex translocates into the nucleus and participates in transcriptional
regulation. Smad3 and Smad4 bind directly to DNA via a GC-rich consensus
sequence called Smad-binding element. In most cases of transcriptional activation,
Smad requires binding of additional transcription factors such as activator protein
(AP-1), Fast-1, Fast-2, transcription factor muE3 (TFE3), simian virus 40
promoter factor 1(Sp-1). Activated Smads in the cell nucleus can also interact with
transcriptional co-activators including cAMP response element binding protein
(CBP) and p300, or with co-repressors including TG-interacting factor (TGIF), c-
Ski, and SnoN, for both activation and inhibition of transcription.

Smad signaling pathway is essential for most TGF-P responses. Recently it
has been shown that cross-talk between other signaling pathways modulate TGF-
B-Smad signaling pathway. TGF-f has been shown to activate extracellular-
signal-regulated kinase (ERK)-1, ERK-2, p38 or c-Jun amino-terminal kinase
(JNK) also known as mitogen-activated protein kinases (MAPKs) (15-17). These
Smad-independent TGF-f signaling pathways are mediated in part by TAK1, a
MAPK kinase kinase (18). Furthermore, TGF-3 and Wnt pathway effectors have
been shown to interact directly (19). The Wnt (ortholog of segment polarity gene
'wingless' in Drosophila) genes encode a large family of secreted protein growth
factors that have been identified in a wide variety of animals including hydra and
humans. During development, Wnts are known to govern cell fate, proliferation,
migration, polarity and death during development, while in adults, Wnts are
known to function in homeostasis, and aberrant activation of Wnt pathway is
implicated in various types of cancers (20). TGF-B-dependent interaction
between Smad3 and transcription factor-lymphocyte enhancer factor 1 (Lefl) has
been shown to regulate synergistic induction of Wnt target genes (21).
Interestingly, the inhibitory Wnt pathway protein, axin has been shown to
associate with Smad3 and facilitate its phosphorylation by TGF-f receptors (22).
A recent study demonstrated that members of p53 family act synergistically with
the Smad complex to control gene expression, and that several TGF-3 target
genes were under control of p53 and Smad in mammalian cells (23).

EXPRESSION OF TGF -[3 IN GASTROINTESTINAL TRACT

While varied expression and localization of all three isoforms of TGF-3 have
been demonstrated in both the adult and the embryonic intestine, localization of
TGF-P and its receptors in gastrointestinal mucosa remains controversial (24-35)
(Table 1). An earlier study reported that all three isoforms of TGF-B colocalize
predominantly to the villus tip of intestine and colon (25). Dunker and co-workers
indicated that TGF-B2 is detected in endocrine cells and TGF-B3 is
predominantly found in goblet cells (30). Immunoreactive TGF-B1 protein has
been detected in human gastric mucosa (31, 32). Clear expressions of TGF-B1, -



Table 1. The localization of TGF-f in gastrointestinal tract.

organ localization isoforms reference

Intestine  mucosal epithelium TGF-B1 24
villus tip cells of the epithelium TGF-B1, 2, and 3 25,26
submucosal region just basal to the epithelium  TGF-B2 26
crypt cells TGF-B1 28
endocrine cells TGF-B2 30
goblet cells TGF-B3 30

Stomach  submucosal region just basal to the epithelium  TGF-2 26
chief cells and parietal cells of the fundic gland TGF-B1, 2 and 3 32
parietal cells, mucus cells TGF-B1 33
chief cells TGF-B2 33
parietal cells, mucus cells, chief cells TGF-B3 33
epithelial cells beneath the proliferative zone TGF-B1 35

B2, -B3, type I and type II receptors in chief and parietal cells of the fundic glands
have been documented (32). In contrast, Naef and co-workers showed that TGF-
B1 is localized mainly to parietal cells and also to some surface mucus cells, TGF-
B2 was present exclusively in chief cells and TGF-B3 was present in parietal,
chief and mucus cells (33). Another study reported that gastric fibroblasts of
human stomach occasionally showed immunoreactivity for proTGF-1 (TGF-B1
precursor), whereas epithelial cells were all negative (34). In rat stomach, TGF-3
mRNA in normal gastric mucosa (35, 36) and immunoreactive TGF-B1 protein
exclusively localized to the epithelial cells beneath the proliferative zone in the
gastric glands has been reported (35).

The precise role of constitutive TGF-3 in normal gastrointestinal tract remains
unknown. Several reports suggest that TGF-1 may function as a regulator of
epithelial morphogenesis in the gastrointestinal tract. In TGF-B1 heterozygous
mice, hyperplastic lesions similar to human gastritis cystica profunda were
observed (37). An earlier study indicated that laminins and TGF-$ maintain cell
polarity and function of human gastric glandular epithelium and regulate the
architecture of gastric glands (38). In TGF-B2 and -B3 heterozygous mice,
programmed cell death was significantly reduced in the intestinal mucosa
accompanied by an increase in villus length and upregulation of Bcl-xL and Bcl-
2 (30), suggesting that TGF-3 may play an important role in the control of growth
and differentiation in the gastrointestinal mucosa and may function in
gastrointestinal epithelium as a coordinator of cell turnover.

TGF-B AND GASTROINTESTINAL ULCER HEALING

Recent studies showed that TGF-f3 accelerates healing of experimental dermal
ulcer and incisional dermal wounds (39-41) by regulating migration,
proliferation, and differentiation of various cells and by stimulating synthesis of
extracellular matrix and angiogenesis (10, 42, 43).



Similarly, it has been suggested that TGF-3 accelerates gastrointestinal ulcer
healing by regulating crucial processes such as proliferation and migration of
epithelial cells and fibroblasts, formation of granulation tissue, deposition of
extracellular matrix and promoting angiogenesis. In experimental gastric ulcer,
TGF-f is overexpressed in the granulation tissue (35, 36). TGF-B1 is mainly
derived from macrophages, polymorphonuclear cells, fibroblasts and
myofibroblasts in the granulation tissues of gastric ulcer (35). Exogenous TGF-3
accelerates gastrointestinal mucosal wound repair in vitro (44-46) and in vivo (41,
47, 48). While local and systemic TGF-33 treatment has been shown to accelerate
gastric ulcer healing in rats (47), Ernst and co-workers reported that injection of
TGF-B1 into the subserosa around the experimental gastric ulcer accelerate
gastric ulcer healing (48). Blocking of TGF- type II receptor using dominant-
negative type II receptor constructs results in impairment of mucosal healing in
dextran sulfate sodium-induced colitis model and in vitro wound-healing model
(49). Clinical studies show that patients with healed gastric ulcers showed
increased expression levels of both TGF-P and its receptors while patients with
refractory ulcers had weak or deficient TGF- expression in the gastric mucosa,
suggesting crucial role of TGF-P in gastric ulcer healing (50).

Clinical studies demonstrate that prostaglandins of E series (PGEs) and their
synthetic analogs facilitate healing of gastroduodenal ulcers, dermal ulcers and
wounds (51-54). In addition, a previous study also demonstrated that treatment
with a synthetic PGE1 analog with agonistic activity to EP1-4 receptors,
misoprostol accelerated non-steroidal anti-inflammatory drugs-induced gastric
ulcers (52). Experimental studies in rats demonstrated that treatment with PGE1
stimulated TGF-B1 expression and this increase was associated with the
accelerated gastric ulcer healing. Conversely, treatment with combination of
PGEI and indomethacin, which inhibits prostaglandin synthesis, reduced TGF-p1
expression and delayed ulcer healing. These studies indicate important role of
TGF-B1 in PGE1-promoted gastric ulcer healing (35).

TGF-B has also been reported to regulate the cyclooxygenase-2 (COX-2)
expression. Takahashi and co-workers demonstrated in in vivo and in vitro studies
that COX-2 protein is localized to the base of gastric ulcers in rats and that COX-
2 mRNA expression is regulated positively by IL-1p and TNF-a and negatively
by TGF-B1 (36). Thus, TGF-B1 plays important roles in the process of gastric
ulcer healing where it interacts with prostaglandins and COX-2.

MECHANISMS OF TGF-§ PROMOTED GASTROINTESTINAL ULCER HEALING

The effect of TGF-J on cell proliferation and migration of epithelial cells

Re-epithelialization is an essential process for cutaneous and gastrointestinal
wound/ulcer healing (6, 8). TGF-f accelerates mucosal re-epithelialization by
promoting cell migration. The addition of TGF-B1 to wounded rat intestinal



epithelial cell monolayers inhibits proliferation, but stimulates migration of these
cells and subsequently promotes restitution (44). Inactivation of TGF-B1 by using
specific neutralizing antibody inhibited the restitution promoted by EGF, TGF-a.,
Interleukin-1p and Interferon-y (45). Blockade of intestinal epithelial TGF-3
activity by dominant-negative TGF-J type II receptor impaired intestinal wound
healing in vitro and in vivo (49). Similarly, it has been shown that gastric mucosal
cell monolayers restitution was retarded by neutralization of endogenous TGF-f3
with anti-TGF- antibody while were restored by human recombinant TGF-3
treatment. This suggests that TGF- is required for re-epithelialization of gastric
ulcer during healing (46).

Numerous mechanisms by which TGF-B might stimulate cell migration have
been proposed. It has been suggested that TGF-B strengthens attachment of
migrating epithelial cells to basement membrane collagens by regulating
expression in the epithelial cells of extracellular matrix receptor such as integrin,
fibronectin, vitronectin and laminin, which facilitate keratinocyte migration (55-
57). It has been also suggested that TGF-B may directly stimulate cell motility by
modulating a hyaluronan receptor and reorganizing actin cytoskeleton (58, 59).

TGF-f and angiogenesis during gastrointestinal ulcer healing

Angiogenesis - formation of a new microvascular network - is a major
component of wound healing and tissue regeneration. It is important for the repair
of acute gastric mucosal injury and for chronic gastrointestinal ulcer healing (6-
9). Numerous studies have demonstrated that the growth of granulation tissue and
generation of new microvessels through angiogenesis is stimulated by basic
fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF),
platelet-derived growth factor (PDGF) and angiopoietins and possibly by other
growth factors and cytokines, including interleukin-1 and tumor necrosis factor-
o (60, 61).

Recent studies suggest that TGF-f can also trigger angiogenesis by inducing
expression of angiogenic factors such as VEGF in both epithelial cells and
fibroblasts (62, 63). In addition, TGF-P induces the expression and secretion of
matrix metalloproteinases leading to capillary basement membrane dissolution
allowing endothelial cells migration, essential for angiogenesis (64).

Induction of extracellular matrix by TGF-f3

Extracellular matrix such as collagen types I, III, IV, fibronectin and laminin
in the interstitium and in the basement membrane has been implicated in cell
adhesion, migration, and proliferation during gastric ulcer healing (35, 65, 66). In
addition, TGF- is implicated in the formation of granulation tissues and the re-
establishment of basement membrane allowing re-epithelialization. TGF-f is a
potent stimulator of the expression of extracellular matrix proteins during ulcer
healing (11).
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PERSPECTIVES

While a significant progress in understanding the cellular and molecular
mechanisms of gastrointestinal ulcer healing and involvement of TGF-f in this
process has been recently accomplished, the precise roles of TGF-f in healing of
gastrointestinal ulcers remain unclear. This is partly due to cell-type specific
effect of TGF-P and cross-talk with other signaling pathways. For example, in
contrast to predictions made on the basis of the ability of exogenous TGF-3 to
improve wound healing, Smad3-null (Smad3=***) mice paradoxically show
accelerated cutaneous wound healing compared to wild-type mice, reflected by
increased re-epithelialization and significantly reduced local monocytic
infiltration (67). Similarly, re-epithelialization of large intestine after injury by 2,
4, 6-trinitrobenzene sulfonic acid is faster in Smad3 heterozygous mice than in
wild-type littermates even if there is no difference in the degree of mucosal
inflammation between the two groups (68). However, overexpression of Smad3
targeting mainly dermal fibroblasts by subcutaneous injection of adenovirus
containing Smad3 complementary DNA accelerates wound healing with
upregulation of o-smooth muscle actin, VEGF and fibroblast growth factor
receptor (69). Further elucidation of cell type-specific roles of TGF-B-Smad
signaling pathway and the downstream effects of various cross-talks would
enhance our understanding of the mechanisms controlling the healing processes
of gastrointestinal ulcers and could help develop new therapeutic modalities.
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