Skip to main content
eScholarship
Open Access Publications from the University of California

Structural dynamics of the Δe22 (Osaka) familial Alzheimer's disease-linked amyloid β-protein

  • Author(s): Inayathullah, M
  • Teplow, DB
  • et al.
Abstract

A familial form of Alzheimer disease recently was described in a kindred in Osaka, Japan. This kindred possesses an amyloid β-protein (Aβ) precursor mutation within the Aβ coding region that results in the deletion of Glu22 (ΔE22). We report here results of studies of [ΔE22]Aβ40 and [ΔE22]Aβ42 that sought to elucidate the conformational dynamics, oligomerization behavior, fibril formation kinetics, fibril morphology, and fibril stability of these mutant peptides. Both [ΔE22]Aβ peptides had extraordinary β-sheet formation propensities. The [ΔE22]Aβ40 mutant formed β-sheet secondary structure elements ≈ 400-fold faster. Studies of β-sheet stability in the presence of fluorinated alcohol cosolvents or high pH revealed that the ΔE22 mutation substantially increased stability, producing a rank order of [ΔE22]Aβ42 > Aβ42 > [ΔE22]Aβ40 > Aβ40. The mutation facilitated formation of oligomers by [ΔE22]Aβ42 (dodecamers and octadecamers) that were not observed with Aβ42. Both Aβ40 and Aβ42 peptides formed nebulous globular and small string-like structures immediately upon solvation from lyophilizates, whereas short protofibrillar and fibrillar structures were evident immediately in the ΔE22 samples. Determination of the critical concentration for fibril formation for the [ΔE22]Aβ peptides showed it to be ≈ 1/2 that of the wild type homologues, demonstrating that the mutations causes a modest increase in fibril stability. The magnitude of this increase, when considered in the context of the extraordinary increase in β-sheet propensity for the ΔE22 peptides, suggests that the primary biophysical effect of the mutation is to accelerate conformational changes in the peptide monomer that facilitate oligomerization and higher-order assembly. © 2011 Informa UK, Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View