- Main
Femtosecond Symmetry Breaking and Coherent Relaxation of Methane Cations at the Carbon K-Edge
Abstract
Understanding the relaxation pathways of photoexcited molecules is essential to gain atomistic level insight into photochemistry. Herein, we perform a time-resolved study of ultrafast molecular symmetry breaking via geometric relaxation (Jahn-Teller distortion) on the methane cation. Attosecond transient absorption spectroscopy with soft X-rays at the carbon K-edge reveals that the distortion occurs within $10\pm 2$ femtoseconds after few-femtosecond strong-field ionization of methane. The distortion activates coherent oscillations in the scissoring vibrational mode of the symmetry broken cation, which are detected in the X-ray signal. These oscillations are damped within $58\pm13$ femtoseconds, as vibrational coherence is lost with the energy redistributing into lower-frequency vibrational modes. This study completely reconstructs the molecular relaxation dynamics of this prototypical example and opens new avenues for exploring complex systems.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-