
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Deployment algorithms for mobile robots under dynamic constraints

Permalink
https://escholarship.org/uc/item/2361n6v1

Author
Kwok, Andrew Nicholas

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2361n6v1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Deployment Algorithms for Mobile Robots under Dynamic Constraints

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Andrew Nicholas Kwok

Committee in charge:

Professor Sonia Mart́ınez, Chair
Professor Jorge Cortés
Professor J. William Helton
Professor Kenneth Kreutz-Delgado
Professor Miroslav Krstic

2011

Copyright

Andrew Nicholas Kwok, 2011

All rights reserved.

The dissertation of Andrew Nicholas Kwok is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2011

iii

EPIGRAPH

Then let us all do what is right, strive with all our might toward the unattainable,

develop as fully as we can the gifts God has given us, and never stop learning.

—Ludwig van Beethoven

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita and Publications . xiv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Summary of results . 3

1.1.1 Distributed deployment that incorporates power
consumption . 4

1.1.2 Applying hybrid systems analysis to nonholonomic
deployment . 4

1.1.3 Coverage maximization in a fast flow environment 5
1.1.4 Improved deployment via deterministic annealing 5

1.2 Outline . 6

Chapter 2 Notation and Preliminaries . 8
2.1 Basic notation . 8
2.2 Locational Optimization 9
2.3 Centralized deterministic annealing 11
2.4 Hybrid systems review 13
2.5 Distributed algorithms 16

Chapter 3 Sensor Deployment under Power Limitations 20
3.1 Problem definition . 21

3.1.1 Energy-aware coverage by mobile sensors 22
3.1.2 Energy-limited coverage by mobile sensors 23

3.2 Limited-range, generalized Voronoi regions and associ-
ated proximity graphs . 25
3.2.1 Global partitions determined from the intersec-

tion of spheres . 25
3.2.2 Limited-range partitions 30

v

3.2.3 Communication graphs 32
3.3 Objective function gradient characterization 33
3.4 Gradient-ascent deployment algorithms 39

3.4.1 Optimal gain selection 41
3.4.2 Convergence analysis 44
3.4.3 An algorithmic formulation for deployment 48

3.5 Simulations . 49
3.5.1 Energy-aware coverage case 50
3.5.2 Area coverage case 51
3.5.3 Mixed coverage case 51
3.5.4 Base return coverage case 52

Chapter 4 Unicycle Coverage via Hybrid Systems Analysis 59
4.1 Problem setup and notation 60

4.1.1 Nonholonomic vehicle dynamics 60
4.2 Vehicles with variable forward velocity 64

4.2.1 Hybrid modeling 64
4.2.2 Asymptotic convergence 70

4.3 Vehicles with fixed forward velocity 72
4.3.1 Virtual center switching 72
4.3.2 Hybrid modeling 74
4.3.3 Convergence analysis 77

4.4 Simulations . 79

Chapter 5 Deployment with Environmental Constraints 81
5.1 Problem statement and definitions 83
5.2 Affine flows . 85

5.2.1 Properties of the reachable set 85
5.2.2 T -limited reachable set 88
5.2.3 Special flow examples 90

5.3 Piecewise constant flows – simple optimal trajectories . . 92
5.3.1 Catalog of optimal trajectories 93
5.3.2 Simple trajectories 93

5.4 Piecewise constant flows–optimal non-simple trajectories 98
5.4.1 Obstacles . 98
5.4.2 Intersecting trajectories 102
5.4.3 Trajectories along flow interfaces 105
5.4.4 Flow along a general boundary 109
5.4.5 Nested non-simple trajectories 110

5.5 Area coverage . 110
5.5.1 Gradient of the area objective function 111
5.5.2 Affine flow cases 113
5.5.3 Constant flows . 113

vi

5.5.4 Piecewise constant flows 115
5.6 Simulations . 119

Chapter 6 Distributed Deterministic Annealing 124
6.1 Problem formulation . 125
6.2 Limited-range DA lagrangian gradient 126

6.2.1 Limited-range association probabilities 126
6.2.2 Limited-range partition 128
6.2.3 Gradient formulation 131
6.2.4 Constant factor approximation 133

6.3 Limited-range DA phase changes 135
6.3.1 Area metric . 137
6.3.2 Mixed metric . 139

6.4 Distributed implementation 141
6.4.1 Algorithm descriptions 141
6.4.2 Algorithm complexity 143

6.5 Simulations . 144

Chapter 7 Robotic Testbed . 154
7.1 Central server . 154

7.1.1 Overhead vision 155
7.1.2 Communication 157

7.2 Robot description . 158
7.2.1 Components and construction 158
7.2.2 Motion controller 161

7.3 Experimental results . 162

Chapter 8 Closing remarks . 168
8.1 Review of results . 168
8.2 Future directions . 170

8.2.1 Efficient computation of Voronoi diagrams in a flow171
8.2.2 Coverage on general manifolds 171
8.2.3 Coverage on a graph 172

Bibliography . 174

vii

LIST OF FIGURES

Figure 3.1: Proposed partition of R . 26
Figure 3.2: Diagram for the derivation of the Voronoi boundary location. . 27
Figure 3.3: Comparison of the PWVD and MWVD 29
Figure 3.4: Comparison of the limited range power-weighted and multiplica-

tively-weighted partitions . 32
Figure 3.5: Motivation for modified gain 43
Figure 3.6: Comparison between the performance of k(i)

∗
from (3.34) and

from (3.35) . 53
Figure 3.7: Energy-aware coverage simulation results 54
Figure 3.8: Energy-aware coverage energy consumption results 54
Figure 3.9: Energy consumption histograms for energy-aware coverage . . . 54
Figure 3.10: Objective function values for the energy-aware coverage using

the PWVD the MWVD . 55
Figure 3.11: Area coverage simulation results 55
Figure 3.12: Area coverage simulation energy consumption results 55
Figure 3.13: Energy consumption histograms for area coverage using the

PWVD and the MWVD . 56
Figure 3.14: Objective function values for area coverage using the PWVD

and the MWVD . 56
Figure 3.15: Mixed coverage simulation results 56
Figure 3.16: Mixed coverage simulation energy consumption results 57
Figure 3.17: Energy consumption histograms for mixed coverage using the

PWVD and the MWVD . 57
Figure 3.18: Objective function values for the mixed coverage using the PWVD

and the MWVD . 57
Figure 3.19: Base-return coverage simulation results 58

Figure 4.1: Vehicle with wheeled mobile dynamics 61
Figure 4.2: State transition diagram for each vehicle in the network. . . . 67
Figure 4.3: Wheeled vehicle deployment simulation 80
Figure 4.4: Fixed forward velocity deployment simulation 80

Figure 5.1: Different angular quantities for calculating β(x) 83
Figure 5.2: Cartoon to aid in proof of Proposition 29 86
Figure 5.3: An example of the reachable set 88
Figure 5.4: Diagram for time optimality in a fast flow 90
Figure 5.5: The T -limited reachable set RT (p

(i)) when the flow field is a
constant . 91

Figure 5.6: Examples of reachable set regions RT (p
(i)) with flows of the

form (5.8) . 92
Figure 5.7: A general piecewise flow case 93

viii

Figure 5.8: Diagram for deriving the relation between incoming and outgo-
ing headings at the interface between two regions of different,
but constant, flows. 94

Figure 5.9: Trajectories of solutions for the case of a three region flow . . . 97
Figure 5.10: A graphical interpretation of Lemma 35 99
Figure 5.11: Diagram illulstrating convexity relative to the flow environment 99
Figure 5.12: Convex boundary counterexample 100
Figure 5.13: A diagram demonstrating optimality of a path the follows the

boundary of an obstacle . 101
Figure 5.14: Cartoon for the proof of 36 . 101
Figure 5.15: Illustrations of scenarios where the simply-reachable set is not

equal to the entire reachable set 102
Figure 5.16: An illustration of a scenario where simple trajectories intersect

each other . 103
Figure 5.17: Example of one path flowing around an obstacle faster than the

other . 104
Figure 5.18: Example of trajectories terminating at a flow interface 104
Figure 5.19: Trajectories along flow interfaces 105
Figure 5.20: Example of trajectories that move along a flow interface and

return into the original flow region 109
Figure 5.21: Flow along a general boundary 110
Figure 5.22: Nested non-simply-reachable set 111
Figure 5.23: Diagram for the proof of Proposition 47. 117
Figure 5.24: Different snapshots of the area deployment algorithm in an

affine flow for 8 agents . 120
Figure 5.25: Deployment in a piecewise constant flow environment by 8 agents121
Figure 5.26: Coverage area plot of the simulation in Figure 5.25 122
Figure 5.27: Deployment in a flow environment with an island obstacle by 8

agents . 123
Figure 5.28: Coverage area plot of the simulation in Figure 5.27. 123

Figure 6.1: Graphical description of notation for DA indices and sets. . . . 131
Figure 6.2: A typical run of the limited-range DA algorithm 145
Figure 6.3: A typical run of the limited-range DA algorithm 146
Figure 6.4: A comparison between best- and worst-case performance of the

Lloyd-like gradient decent . 147
Figure 6.5: A typical run of the limited-range DA algorithm with R = 4 . . 148
Figure 6.6: A comparison between best- and worst-case performance of the

Lloyd-like gradient decent, R = 4 149
Figure 6.7: Two runs of the limited-range DA algorithm with R = 3 150
Figure 6.8: A comparison between best- and worst-case performance of the

Lloyd-like gradient decent, R = 3 150
Figure 6.9: DA sensitivity to initial conditions 152

ix

Figure 6.10: A comparison between best- and worst-case performance of the
Lloyd-like gradient decent, symmetric Gaussian scenario 152

Figure 6.11: A demonstration of a heating and cooling cycle with R = 3 . . 153

Figure 7.1: Diagram to aid in the derivation of the smoothing Kalman filter. 156
Figure 7.2: Overall testbed architecture and organization. 159
Figure 7.3: Drawing and picture of a robot 160
Figure 7.4: Schematic of the LED identification tag that each robot displays 161
Figure 7.5: An experimental run with a circular density function 163
Figure 7.6: Screen capture of the limited-range nonholonomic deployment

with the density function overlaid on top. 164
Figure 7.7: Limited-range nonholonomic deployment for a collection of Gaus-

sian peaks . 164
Figure 7.8: Screen capture of the limited-range nonholonomic deployment

with the density function overlaid on top. 165
Figure 7.9: Power-limited MW deployment in the testbed 165
Figure 7.10: DA deployment in the testbed 167

x

LIST OF TABLES

Table 7.1: Robot bill of materials, May 2010 166

xi

ACKNOWLEDGEMENTS

First and foremost, I owe the world to my parents. Mom and Dad, without

your emphasis on education in all forms I would not be here today. Thank you

for all the times that you supported me, and let nothing get in the way of my

educational goals. Thank you for all the times you reminded me to practice the

piano growing up, it has become an immense source of sanity lately. Thank you

also for keeping in touch and reminding me that life also is not just about school.

To my brother and sister Jeff and Jessica. Wow we have gone a long ways

since we were young and living at home. You both have such promising and

wonderful futures ahead of you, I can tell. Thank you for providing great times

growing up and here’s to many more good times in the future!

To Sonia, I hope this academic journey that I am concluding has been as

enlightening for you as it was for me. Thank you for introducing me to the world of

multi agent control, and guiding me through its intricacies in the beginning. Thank

you also for developing my skills and for aiding me in achieving more independence

in my research endeavors. Last but not least, thank you for reminding me every

now and then not to stray too off course in my work.

Dear Professors Miroslav Krstic, Ken Kreutz-Delgado, Bill Helton, and

Jorge Cortés, I thank you for your consideration and I am honored to have you all

serve on my thesis committee. Thank you for furthering the academic tradition

and maintaining the high standards and rigor that it should demand.

Bahman, we have only known each other for a little over one year, but our

insightful conversations about math, geometry, and life have sufficiently brought

us up to speed and in sync. Thank you for constantly showing me that there is

still so much more in the world of mathematics that I can try to learn. I wish you

the best in your career, you deserve it.

To my past and present colleagues in team Jorge-Sonia–Minghui, Yu, Mike,

Cameron, Dean, Charlie, and Teymur–our group meetings are always insightful

and informative. May there be many more group meetings and may they continue

to be a source of ideas.

To my brothers in life: Oliver, Dave, and Mike. There are uncountably

xii

many good times to reminisce about. Thank you for giving me support, advice

and valued company from the wee days of kindergarten. It is because of you guys

that I know the proper definition of awesome friends.

Nima, my graduation buddy, let this be the start of a fantastic future

and the beginnings of successful careers. Thank you for offering your lab space

for lunch breaks, microwaves, and other non-academic pastimes. For the sake of

further self-incrimination, I will stop there.

Finally, thank you to Scripps TG. It is because of your brilliant event that

I have something to look forward to at the end of every week. May many more

TG’s carry on into the future. Last but not least, thank you Filter Coffee shop in

Hillcrest for providing the twenty-four hour office away from the office for my late

night thesis writing escapades.

This work was funded by the following grants: NSF Career Award CMS-

0643673, NSF IIS-0712746, and NSF-0930919.

xiii

VITA

2006 B. S. in Mechanical Engineering with honors, California In-
stitute of Technology, Pasadena

2008 M. S. in Engineering Sciences (Mechanical Engineering), Uni-
versity of California, San Diego

2011 Ph. D. in Engineering Sciences (Mechanical Engineering),
University of California, San Diego

PUBLICATIONS

Journal Publications

A. Kwok and S. Martinez, “Deployment algorithms for a power-constrained mobile
sensor network,” International Journal of Robust and Nonlinear Control, vol. 20,
no. 7, pp. 725–842, 2010.

A. Kwok and S. Martinez, “Unicycle coverage control via hybrid modeling,” IEEE
Transactions on Automatic Control, vol. 55, no. 2, pp. 528–532, 2010.

A. Kwok and S. Martinez, “A Distributed Deterministic Annealing Algorithm for
Limited-Range Sensor Coverage,” IEEE Transactions on Control Systems Tech-
nology, In print, DOI: 10.1109/TCST.2010.2053036, Aug. 2010.

A. Kwok and S. Martinez, “Coverage maximization with autonomous agents in fast
flow environments,” AIAA Journal of Guidance, Control, and Dynamics, Under
review, submitted Sep. 2010.

Conference Proceedings

A. Kwok and S. Martinez, “Energy-balancing cooperative strategies for sensor de-
ployment,” IEEE International Conference on Decision and Control, New Orleans,
pp. 6136–6141, 2007.

A. Kwok and S. Martinez, “Deployment algorithms for a power-constrained mo-
bile sensor network,” IEEE International Conference on Robotics and Automation,
Pasadena, pp. 140–145, 2008.

A. Kwok and S. Martinez, “Coverage control with unicycles via hybrid modeling,”
American Control Conference, Seattle, pp. 2672–2677, 2008.

A. Kwok and S. Martinez, “A distributed deterministic annealing algorithm for
limited-range sensor coverage,” American Control Conference, St. Louis, pp.
1448–1453, 2009.

xiv

A. Kwok and S. Martinez, “A coverage algorithm for drifters in a river environ-
ment,” American Control Conference, Baltimore, pp. 6436–6441, 2010.

A. Kwok and S. Martinez, “Deployment of drifters in a piecewise-constant flow
environment,” IEEE International Conference on Decision and Control, Atlanta,
2010.

A. Kwok and R. Holsapple, “Approximate decentralized sensor fusion for Bayesian
search of a moving target,” AIAA Infotech@Aerospace, St. Louis, to appear, 2011.

xv

ABSTRACT OF THE DISSERTATION

Deployment Algorithms for Mobile Robots under Dynamic Constraints

by

Andrew Nicholas Kwok

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2011

Professor Sonia Mart́ınez, Chair

The use of unmanned vehicles in exploration and surveillance operations

has become evermore pervasive in today’s world. The development of coopera-

tive motion strategies has been fueled by this increasing demand. However, many

dynamical models for these autonomous vehicles remain simple and are not accu-

rate representations of a vehicle where such cooperative motion strategies may be

physically implemented. This dissertation will focus on the problem of cooperative

deployment of autonomous vehicles subject to various constraints. We will enforce

communication or sensing range limitations between agents via range-limited par-

titions of the coverage environment. Additional novel work includes the investi-

gation of constraints due to remaining power supplies, nonholonomic dynamics,

and constraints due to external environmental forces. In addition to these various

xvi

constraints, we develop a distributed deterministic annealing algorithm to address

the separate problem of suboptimal convergence that is exhibited by many of the

cooperative deployment problems studied in this work. Theoretical convergence

results are obtained in each topic and these are verified in simulation as well as

in a robotic test bed developed for this dissertation that we have at UCSD when

applicable.

xvii

Chapter 1

Introduction

While we are quite far away from the apocalyptic world depicted in the hit

series of Terminator movies, the best way to summarize the field of distributed

motion control to anyone that you meet, whether on a bus, on a busy street, or

in a cafe, is: “I am helping to build Skynet.” If the reference is lost on said

person, “I am studying how to get a group of autonomous agents to deploy over

some region in order to maximize some measure of coverage while keeping physical

constraints, like battery life, in mind,” just does not provoke the same spark of

interest in this work.1 Of course, images of the end of civilization and murderous

robots carries quite a grim outlook on this direction of research. Thus, after the

Terminator reference and perhaps an awkward chuckle, one immediately follows

up with the fact that such research has immediate application to improving the

quality of human life.

Many applications of distributed motion control that hold promise to pro-

gress humanity rather than destroy it come to the immediate forefront. The

prospect of autonomous cars on the roadways [10, 60, 23] holds promise to greatly

reduce injuries and fatalities that result from traffic accidents. Such technology can

also solve, perhaps temporarily, the issue of overcrowding on all the busy streets

of this world. Along similar lines, the current method of managing air traffic and

providing safety in the air cannot scale at the same rate as the increase in air

traffic. Several studies have been done to distribute this crucial task in such a way

1Unless you happen to run into a fellow control engineer at such a location.

1

2

to insure safety and provide scalability, cf [83, 4, 86]. Yet another example appli-

cation deals with the streamlining of distribution warehouses using autonomous

agents to transport goods; i.e., [88].

The study of distributed motion control fits into the larger field of coop-

erative networks. Indeed, motion of agents in a network may be applied to the

study of interesting behavior found in nature. Immediate examples range from

the study of large insect hives to flocks of fish and birds; e.g., [49, 57, 18]. On a

much smaller scale, motion coordination may hold the key to explaining certain

aggregating behaviors of single-celled organisms such as in [31]. Even more exotic,

such ideas may be applied to the modeling and control of nanomotors like those

described in [33].

Such examples of mobile networks hold the promise to impact a large num-

ber of applications for exploration, environmental monitoring, safety, and recovery

operations. A typical task in such applications involves deployment of cooperative

agents within the operating environment in order to gather various measurements

like temperature or chemical concentration. These sensors, endowed with the abil-

ity to move, provide a key advantage over static sensor networks. For example,

suppose one wishes to monitor the spread of a oil slick. Ambient water currents

may change, and if the network of sensors cannot dynamically adjust to these

changes, then the quality sensor readings of the network may deteriorate. This

results in more inaccurate estimation of the slick, which may have adverse effects

if this information was used to coordinate cleanup efforts. The ability to move and

track more important areas of the environment affords sensors networks greater

resolution in their measurements.

Furthermore, suppose that one of these oil slick monitoring vehicles drops

out due to hardware failure. In the case of a static network of buoys as sensors,

there is now a large hole in the sensor network, which leads to higher uncertainty of

the spread of the oil slick in the area of that malfunctioning sensor. With the ability

to move, however, the other agents in the sensor network can work together to fill

in the sensing hole. This capability to dynamically adjust to changing conditions

is completely absent in a static network. Indeed, the study of novel schemes to

3

re-adapt to changing environmental conditions is ongoing, see [30, 75].

Clearly, the task of cooperative deployment for sensing purposes promises

many useful applications. This work aims to further develop this idea and build

upon existing results in the area of motion control. In the interest of coverage for

sensing, one imagines that these autonomous agents wish to collectively maximize

some objective function related to the quality of coverage, see for instance [16, 15,

65, 29, 5, 41, 74].

A concurrent interest in miniaturization of such autonomous vehicles brings

to light problems that may not be major issues for larger vehicles, see for exam-

ple [22, 64, 26, 69]. Naturally, smaller vehicles possess less power available for actu-

ation, motion, and communication. Combined with the possibility of operating in

harsh environments, simple dynamic models–such as those found in [16, 15]–may

no longer be valid.

In essence, we would like to extend the coverage algorithms found within [16]

and [15] with additional constraints on motion or additional vehicle dynamics. This

dissertation will focus on such deployment and coverage situations where coopera-

tive agents in the network are no longer free to move in certain directions or where

cooperative agents have a finite energy supply (implying that they cannot move

indefinitely). The problem that we study in this dissertation concerns a network

of autonomous agents distributed suboptimally within an operating environment.

These agents must reorganize themselves by using only locally sensed or communi-

cated information into a better coverage configuration dictated by a cost/objective

function. We depart from previous work by incorporating these additional dynamic

constraints into the actual motion control algorithm.

1.1 Summary of results

In what follows, we give a brief overview of the contributions presented in

this dissertation.

4

1.1.1 Distributed deployment that incorporates power con-

sumption

We present a distributed coverage algorithm for mobile sensor networks

where agents have limited power to move. Rather than making use of a con-

strained optimization technique, our approach accounts for power constraints by

assigning non-homogeneously time-varying regions to each robot. This leads to

novel partitions of the environment into limited-range, generalized Voronoi re-

gions. The motion control algorithms are then designed to ascend the gradient

of several types of Locational Optimization functions. In particular, the objective

functions reflect the global energy available to the group and different coverage

criteria. Under the gradient ascent algorithm, we prove convergence to specific

configurations that depend on relative energy values between neighboring agents.

Additionally, the control gain used to perform gradient ascent depends on energy

content of an agent. This has the effect of limiting the velocity of an agent as it

depletes its energy supply, which balances energy consumption across the network

during deployment.

1.1.2 Applying hybrid systems analysis to nonholonomic

deployment

We explore gradient-descent coverage algorithms for a group of nonholo-

nomic vehicles. Similar to previous approaches, the deployment strategy relies on

Locational Optimization techniques and algorithms are distributed in the sense

of the Delaunay graph. In order to deal with unicycle dynamics and guarantee

performance, we introduce several vehicle modes and integrate them in a hybrid

system. We then analyze the algorithms with a recently introduced invariance

principle for hybrid systems. Given the unicycle dynamics, and proper choice of

switching rules, we prove convergence of the unicycle vehicles to centroidal Voronoi

configurations. We also demonstrate via computer simulation that such algorithms

successfully converge.

5

1.1.3 Coverage maximization in a fast flow environment

Here, we study the cooperative motion of a network of autonomous vehi-

cles in a fast flow environment. The magnitude of the flow velocity is assumed

to be always greater than the available actuation to each agent. This results in

the inability of agents in such a field to choose any direction of travel it wants.

Collectively, the agents wish to maximize total coverage area defined as the set

of points reachable by any agent within T time. The reachable set of an agent

in a fast flow is characterized using optimal control techniques. Specifically, this

work addresses the complementary cases where the static flow field is smooth, and

where the flow field is piecewise constant. The latter case arises as a proposed

approximation of a smooth flow that remains analytically tractable. Furthermore,

the techniques used in the piecewise constant flow case enables treatment for ob-

stacles in the environment. In both cases, a gradient ascent method is derived to

maximize the total coverage area in a distributed fashion. Through simulations,

such a network is able to maximize the coverage area in a fast flow.

1.1.4 Improved deployment via deterministic annealing

We examine a distributed coverage algorithm for a network of mobile agents

that leverage an existing deterministic annealing (DA) technique to achieve more

optimal convergence values. Typical coverage algorithms employ a pure gradi-

ent based method to deploy. However, typical coverage objective functions contain

many local minima which may result in sub-optimal final agent configurations. We

replicate the results of the classical DA algorithm while imposing a limited-range

constraint to sensors. As the temperature is decreased, phase changes lead to a

regrouping of agents, which is decided through a distributed task allocation algo-

rithm. While simple gradient descent algorithms are heavily dependent on initial

conditions for such non-convex coverage objective functions, annealing techniques

are generally less prone to this phenomena. The results of our simulations confirm

this fact, as we show in the manuscript.

6

1.2 Outline

We present the organization of this dissertation in this section, along with

a brief summary of each chapter’s contents.

• Chapter 2 : In this chapter, we review definitions and results pertaining to

nonlinear systems, Locational Optimization, deterministic annealing, hybrid

systems, and distributed algorithms.

• Chapter 3 : We begin the study of dynamically constrained deployment with

the case where agents have a finite energy supply. We develop a method

to incorporate this constraint into the deployment problem that is both dis-

tributed and able to be computed on-the-fly.

• Chapter 4 : We move on to case where vehicle dynamics prevent motion

in certain directions. Specifically, we give convergence results for the de-

ployment problem when the agents have unicycle dynamics or are Dubin’s

vehicles. These convergence results rely on the hybrid systems version of the

LaSalle invariance principle.

• Chapter 5 : This chapter considers the problem where external environmental

effects substantially influence vehicle dynamics. In particular, we study the

deployment problem for agents moving in a flow environment. Instead of

treating the environment as a source of small-magnitude noise, we assign

dynamics to the flow and those dynamics enter into the equations of motion

of the agents.

• Chapter 6 : Whereas the previous chapters deal with constraints on the

agents’ motion, this chapter focus on the problem of obtaining final agent

configurations that are more robust to perturbations in the choice of initial

positions of agents. We employ an annealing technique with the constraint

that agents should only use local information.

• Chapter 7 : While the work in Chapters 3-6 are verified via Matlab simula-

tions, we test the performance of these deployment algorithms on a testbed

7

constructed at UCSD as part of this dissertation. We detail the equipment

and architecture of the testbed and robots, and then present experimental

results.

• Chapter 8 : Finally, in this chapter we present some concluding remarks

along with possible lines of future work pertaining to constrained multi agent

deployment.

Chapter 2

Notation and Preliminaries

As stated previously, the goal of this work is to present motion control

algorithms for a network of cooperative vehicles with additional constraints on

dynamics. We first begin by specifying notation and definitions that will be com-

mon between the different aspects of cooperative coverage control found in this

work. Then, we present some results from previous work that will be used in the

subsequent chapters.

2.1 Basic notation

Let Q be a convex polytope in RΛ including its interior, and let ‖ · ‖ de-

note the Euclidean norm. We will use R≥0 to denote the set of non-negative real

numbers. A map φ : Q → R≥0, or a distribution density function, will represent a

measure of a priori known information distinguishing zones of Q which are more

important than others. Equivalently, we consider Q to be the bounded support of

the function φ. We denote the interior of a set, S, as S◦, its complement as SC ,

and its boundary as ∂S. The cardinality of S is denoted as |S|.

Definition 1. A partition of Q is a collection of sets, A = {A1, . . . , An}, such
that: (i) Ai

◦ ∩ Aj◦ = ∅ for all i 6= j and, (ii)
⋃n
i=1Ai = Q.

We are interested in developing motion algorithms for a network ofN agents

moving throughout Q. By convention, we let any quantity associated with agent

8

9

i be denoted by the superscript (i). Agent locations are denoted by p(i), i ∈
{1, . . . , N}. We refer to B(i)(R) to be the set of points within a distance R of p(i).

That is, B(i)(R) = {q ∈ Q | ‖q − p(i)‖ ≤ R}. We use this shorthand notation

since we are interested in these agents performing a global task using only local

interactions. Such interactions will be constrained by, for example, a limitation

on communication range based on distance. In this particular case, we say that if

p(j) ∈ B(i)(R), then p(i) can communicate information with p(j). Additionally, we

will make use of the indicator function, 1A : Q→ {0, 1} defined as

1A(q) =







1, q ∈ A ,

0, q /∈ A .

With this notation, we can equivalently say, for example, that agent i can commu-

nicate with agent j iff 1[0,R](‖p(i) − p(j)‖) = 1.

Finally, LfX denotes the Lie derivative (directional derivative) of the vector

field X along the flow f . Since we will be considering the case where f is a real-

valued function with X defined over an open subset of R
m, the Lie derivative

evaluates to be

LfX =
m∑

k=1

∂f

∂xk
Xk ,

where each xk is the typical basis coordinate in Rm. For a set-valued function F

that maps an element in X to a subset of Y , we use the notation F : X ⇉ Y .

2.2 Locational Optimization

The locational optimization problem has its origins in Operations Research.

A typical problem to solve is the following: given a large set of customers, where

should a business place distribution warehouses in order to minimize the mean de-

livery time from any particular warehouse? A concrete example of such a problem

is the system of Netflix distribution centers that provide prompt delivery of DVDs

to households. Now suppose these warehouse locations are mobile, and can react

to changing demand in products. Such a hypothetical situation is the basis of

the work presented in this dissertation. In this section, we review the work found

10

in [16, 15] relating to locational optimization and coverage. We will formally define

the basic deployment and coverage problem with which we base this dissertation

upon.

Let φ : Q→ R≥0 be a scalar field with bounded support Q. Here, φ repre-

sents an a priori measure of information onQ–the higher the value of φ(q), for some

q ∈ Q, the more attention that should be afforded to q. Let P = (p(1), . . . , p(N))

be the aggregation of the agent positions in Q. Take W = (W (1), . . . ,W (N)) to

be any partition of Q. The locational optimization problem involves choosing the

placement of sensor locations in order to minimize some cost of coverage. We as-

sume that quality of coverage is a function of the distance between an agent at

p(i) and a point q ∈ Q. Naturally, one would expect coverage to get poorer as

distance increases. Let f : R→ R be a monotonically increasing function relating

the distance from p(i) to q ∈ Q that expresses this notion of coverage. Then, the

locational optimization problem may be posed as a minimization of

H(P) =
∫

Q

min
p(i)

f(‖p(i) − q‖)dq . (2.1)

For the purpose of distributed algorithms, it would be helpful to restate (2.1)

in terms of the individual contribution that each agent in the network adds to

H. For example, if we wish to minimize the mean squared error between sensor

placement and areas of interest, we take f(x) = x2. It can be shown, see [56, 16],

that such a decomposition of the cost function is possible for this particular choice

of sensing function. By introducing the Voronoi partition, V = (V (1), . . . , V (N)),

where

V (i) = {q ∈ Q | ‖q − p(i)‖ ≤ ‖q − p(i)‖, ∀ j 6= i} , (2.2)

one can show that the locational optimization cost may be rewritten as

H(P,V) =
N∑

i=1

∫

V (i)

‖q − p(i)‖2φ(q)dq . (2.3)

In fact, a similar decomposition exists so long as f is non-decreasing and piecewise

differentiable, see [15].

Associated with each Voronoi region is it’s mass and centroid, respectively

M (i) =

∫

V (i)

φ(q)dq , C(i) =

∫

V (i)

qφ(q)dq . (2.4)

11

It can be shown, see [56, 16], that if agents are in a centroidal Voronoi configuration,

where p(i) = C(i) for all i, then the cost function H is at a local minimum.

With the exception of the results presented in Chapter 6, we shall resort to

a simple gradient descent of to minimize our proposed coverage cost functions. In

order to compute the gradient, we employ a result from [15] that generalizes the

notion of conservation of mass.

Proposition 1. Let {Ω(x) ⊂ R2 | x ∈ (a, b)} be a piecewise smooth family such

that Ω(x) is strictly star-shaped for all x ∈ (a, b). Let the function φ : R2× (a, b)→
R be continuous on R2×(a, b), continuously differentiable with respect to its second

argument for all x ∈ (a, b) and almost all q ∈ Ω(x), and such that for each x ∈
(a, b), the maps q 7→ φ(q, x) and q 7→ ∂φ

∂x
(q, x) are measurable, and integrable on

Ω(x). Then, the function

(a, b) ∋ x 7→
∫

Ω(x)

φ(q, x)dq (2.5)

is continuously differentiable and

d

dx

∫

Ωx

φ(q, x)dq =

∫

Ω(x)

∂φ

∂x
(q, x)dq +

∫

∂Ω(x)

φ(γ, x)n̂T

out

∂γ

∂x
dγ , (2.6)

where n̂out : ∂Ω(x) → R2, q 7→ n̂out(q) denotes the unit outward pointing normal

vector to ∂Ω(x) at q ∈ ∂Ω(x), and γ : S1× (a, b)→ R2 is a parametrization for the

family {Ω(x) ⊂ R2 | x ∈ (a, b)}.

In the following chapters, we will be basing our coverage cost functions

upon these locational optimization cost functions presented here. We will also be

incorporating a communication/sensing range constraint such that the algorithms

developed in the following chapters will spatially distributed.

2.3 Centralized deterministic annealing

The locational optimization problem bears a striking resemblance to the

clustering problem in signal processing. One method of solving this clustering

problem is through annealing techniques. In Chapter 6, we adapt the Deterministic

12

Annealing (DA) algorithm proposed by Rose in [68] to make it more distributed.

We now briefly describe the minimization process of the DA scheme as well as

compare this with the method in [15].

In [68], the end goal is to minimize a distortion function,

D0 =

∫

Q

φ(q)

n∑

i=1

P (pi|q)fi(‖q − pi‖)dq , (2.7)

where fi : R≥0 → R is a general metric (typically fi(x) = x2) and P (pi|q) is the

probability of a point q being associated with an agent pi. However, (2.7) is not

directly minimized. The Shannon entropy function is introduced:

H0 = −
∫

Q

φ(q)
n∑

i=1

P (pi|q) logP (pi|q)dq , (2.8)

and the DA algorithm is a discrete-time algorithm that involves the minimization

of the Lagrangian F0 = D0 − TH0, where T is the temperature of the system.

As temperature decreases, minimizing F0 becomes more similar to minimizing D0.

The association probabilities P (pi|q) are derived from P ∗(pi|q) = argminP (pi|q) F0.

Then, the resulting P ∗(pi|q) are substituted into F0 to yield F̂0, and the optimal

agent locations are given by p∗i = argminpi F̂0.

In the case of the squared distance metric, the centralized DA scheme de-

scribed in [68] gives

F0 = −T
∫

Q

φ(q) logZ0(q)dq , Z0(q) =
∑

i

exp

[

−‖q − pi‖
2

T

]

. (2.9)

In contrast the objective in [15] was to minimize (2.7) with trivial associa-

tion probabilities determined by a Voronoi partition of Q. That is, the probability

of q ∈ Q being associated to pi is 1 iff q is in its generalized Voronoi region. The

introduction of the Shannon entropy into the Lagrangian emphasizes the measure

of uncertainty in the assignment of points q to pi for a given temperature T . As in

a physical process, higher temperatures should indicate a higher state of disorder

(uncertainty), and this is captured here in the DA formulation. The goal of the

DA algorithm is to track the minimum of F̂ as temperature is decreased instead

of trying to descend the gradient all at once in a typical gradient descent scheme.

13

Ultimately, as T → 0, F̂ → D, and we are minimizing the original distortion

function.

As temperature decreases, the system undergoes phase changes. During a

phase change, the number of agents participating in the optimization algorithm

must increase. Roughly speaking, a phase change occurs when a small neighbor-

hood about an equilibrium position p∗i is no longer attractive in the presence of

more than one agent. However, when there is only one agent in this small neigh-

borhood, that agent is attracted to p∗i . Rose in [68] provides a necessary and

sufficient condition to detect phase changes, and we provide an analogous check in

the limited-range case.

2.4 Hybrid systems review

As much as we would like to believe, the world that we live is not perfectly

smooth and continuous. There are many phenomena that exhibit this sort of

discontinuous behavior. For example, imagine a block sliding with friction on a

ramp. Eventually, the deceleration from the friction force causes the block to come

to a stop. However, such motion cannot be described a single continuous ODE.

See [14] for further details on this fascinating topic. In order to extend models to

include such phenomena, we resort to hybrid systems theory.

In addition to modeling everyday discontinuous behavior, the use of hybrid

systems modeling can facilitate and describe the abrupt change in dynamics of

a mobile robot. Simple maneuvers such as transitioning from straight motion to

turning motion implies a change in a mode of operation. The dynamics of this

vehicle depend on the mode of operation that it is in. Hybrid systems modeling

is able to capture this, and we take advantage of this in designing and verifying

the performance of coverage algorithms for nontrivial dynamics such as a wheeled

vehicle.

We will build up to a version of the LaSalle invariance principle for hy-

brid systems at the end of this section. For continuous dynamical systems, that

invariance principle is:

14

Theorem 2 (LaSalle, see [34], Theorem 4.4). Let Ω ⊂ D be a compact set that

is positively invariant with respect to ẋ = f(x). Let V : D → R be a continuously

differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in

Ω where V̇ (x) = 0. Let M be the largest invariant set in E. Then every solution

starting in Ω approaches M as t→∞.

Here we gather some useful results on the modeling and the stability analysis

of hybrid automata. The exposition is taken from [25, 72] and included here for

completeness.

Definition 2 (Hybrid time domain). D ⊂ R≥0 × N is a compact hybrid time

domain if

D =

J−1⋃

j=0

([tj , tj+1], j) ,

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 · · · ≤ tJ . It is a hybrid

time domain if for all (T, J) ∈ D, D ∩ ([0, T]× {0, 1, . . . , J}) is a compact hybrid

domain.

Elements in hybrid time domains can be ordered: we say that (ti, ji) �
(ti+1, ji+1) iff ti + ji ≤ ti+1 + ji+1, j ∈ {1, . . . , J}.

Definition 3 (Generalized solution). A generalized solution is a function x(t, j) ∈
O defined on a hybrid time domain dom x such that:

1. on each interval [tj , tj+1]×{j} ⊂ dom x of positive length (so that tj < tj+1)

we have

ẋ(t, j) ∈ F (x(t, j)), x(t, j) ∈ A ,

2. for each (t, j) ∈ dom x such that (t, j + 1) ∈ dom x, we have

x(t, j + 1) ∈ G(x(t, j)), x(t, j) ∈ B .

The set-valued maps F : O ⇉ RN and G : O ⇉ RN are the flow map and jump

map, respectively. The sets A ⊂ O and B ⊂ O denote where the state may flow in

continuous time, and where the state may make a discontinuous jump, respectively.

It is possible for A∩B 6= ∅, and in this case, both flowing and jumping may occur.

Together, F,G,A,B define a hybrid system, S = (F,G,A,B).

15

Definition 4 (Complete solution). A solution x : dom x→ Rn to a hybrid system

S is complete if dom x is unbounded.

As an example, a solution that is defined for all time, (t, j) ∈ [0,∞) ×
{0, 1, . . . , J} is complete. In addition a solution that exhibits an infinite number

of switches in a finite time (a Zeno solution), (t, j) ∈ [0, T]× N is also complete.

Definition 5 (Precompact solution). A solution x : domx → Rn to a hybrid

system S is precompact if it is complete and the closure of the range of x, rgex ⊂
O.

Definition 6 (Weak invariance). For a hybrid system S, the set M ⊂ O is said

to be:

1. weakly forward invariant if for each x0 ∈M there exists at least one complete

solution x with x(t, j) ∈M for all (t, j) ∈ dom x;

2. weakly backward invariant if for each q ∈ M, N > 0 there exists x0 ∈ M
and at least one solution x such that for some (t∗, j∗) ∈ dom x, t∗ + j∗ >

N, x(t∗, j∗) = q and x(t, j) ∈M for all (t, j) � (t∗, j∗), (t, j) ∈ dom x;

3. weakly invariant if it is both weakly forward invariant and weakly backward

invariant.

Assumption 1 (Basic Conditions). A hybrid system S = (F,G,A,B) on a state

space O ⊂ RN satisfies the Basic Conditions if:

(i) O ⊂ RN is an open set,

(ii) A and B are relative closed sets in O,

(iii) F is outer semicontinuous, locally bounded on O, and convex ∀ x ∈ A,

(iv) G is outer semicontinuous, locally bounded on O, and satisfies G(x) ⊂ O,

∀ x ∈ B.

Theorem 3 (Hybrid invariance principle, [72] Corollary 4.3). Given a hybrid sys-

tem S = (F,G,A,B) that satisfies the Basic Conditions, suppose that:

16

• V : O → R is continuous on O and locally Lipschitz on a neighborhood of A,

• U ⊂ O is nonempty,

• uA(x) = maxf∈F (x) LfV (x) ≤ 0 for all x ∈ A,

• uB(x) = maxx+∈G(x){V (x+)− V (x)} ≤ 0 for all x ∈ B.

Let x be precompact with rgex ⊂ U . Then, for some constant r ∈ V (U), x ap-

proaches the largest weakly invariant set in V −1(r) ∩ U ∩
(

u−1
A (0) ∪ u−1

B (0)
)

.

2.5 Distributed algorithms

Here we make clear the notion of a distributed algorithm. Whereas it may

be possible to complete a task given all the necessary information, the same task

may be accomplished using a subset of that information. For example, it may not

be necessary for any single agent in a mobile sensor network to be aware all events

in the entire operating environment. The rhetorical question that describes this

idea is: why should an individual agent care about what is happening to another

agent halfway across the world?

To make the notion of a distributed algorithm more precise, we must start

with a few definitions. See [45] and [8] for a complete treatment.

Definition 7 (Directed graph). A directed graph or a digraph is a pair G = (V,E)

where V is the vertex set and E is the edge set such that E ⊆ V × V . A vertex

vi ∈ V is connected to vj ∈ V if (vi, vj) ∈ E.

Definition 8 (Undirected graph). An undirected graph or a graph is a digraph

G = (V,E) such that for all (vi, vj) ∈ E, we have (vj, vi) ∈ E.

For the work presented in this thesis, we will be dealing mainly with net-

works where inter-agent communication links can be represented as an undirected

graph. In other words, we assume that if a communication link exists between

agents i and j, then information can flow in both directions.

17

Definition 9 (Neighbor). The neighbor set of agent i in the graph G = (V,E) is

the set of agents N (i) = {v(j) ∈ V | (v(i), v(j)) ∈ E}.

The following definition precisely defines what a distributed algorithm is.

Definition 10 (Distributed algorithm). A distributed algorithm A for a network

of agents consists of the sets

1. A, the communication alphabet, whose elements are called messages, and

such that A contains the Null message,

2. the processor state sets W (i), i ∈ {1, . . . , N}, and

3. the sets of allowable initial values, W
(i)
0 ⊆W (i), i ∈ {1, . . . , N};

and of the maps

1. msg(i) : W (i) × {1, . . . , N} → A, the message generating function for i ∈
{1, . . . , N}, and

2. stf(i) : W (i) × AN →W (i), the state transition functions for i ∈ {1, . . . , N}.

In essence, each round of a distributed algorithm consists of one execution

of msg(i), transmission of the generated message, receipt of messages generated by

other agents, and finally execution of stf (i) for each i ∈ {1, . . . , N}. Let the set

of messages received at each round of the above general algorithm be denoted as

Y (i) ∈ A
N .

Definition 11 (Distributed algorithm over a graph). We say that an algorithm is

distributed over the graph G = (V,E) if the received messages at each round has

the following form for all i, j ∈ {1, . . . , N}, j /∈ N (i) implies Y
(i)
j = Null.

We now define some algorithmic primitives that we will employ in describing

the algorithms we develop. Messages to a particular agent i can be sent with

send(a, i), where a ∈ A and i ∈ {1, . . . , N}. Messages can also be sent to a set

of agents, for example send(a, N (i)) sends a to all agents in the neighbor set of

i. To receive all such messages we define Listen as the function that returns all

the messages received during one round of an algorithm.

18

Let flood(a) to be an algorithm that floods a message, a ∈ A, over the

entire network. After completion of flood(a) by agent i, any agent j for which

a path exists in the communication graph from i to j will have knowledge of a

(possibly the Null message). We now formulate this algorithm with the framework

presented previously. For proper termination of this algorithm, all agents need to

know the total number of agents N . Suppose we are given the alphabet A. Let

W (i) consist of the following components: {Y (i), roundCtr}, where Y (i) ∈ AN , and

roundCtr ∈ Z. Initially, roundCtr = 0. The message generating map is:

msg(i) =







Null, if Y
(i)
j = Null, ∀j ∈ N (i) ,

Null, if roundCtr > N ,

a, otherwise .

The state transition map performs the following operations:

stf(i) :
{

roundCtr ← roundCtr + 1 .

For the sake of brevity, we shall use a more compact form to describe our dis-

tributed algorithms in the remainder of this work. For example, the flood(a) al-

gorithm can be equivalently stated in Algorithm 1. We also define floodMax(x(i))

as a flooding method to determine maxi∈{1,...,n} x
(i) over the entire network as

in [45].

19

Algorithm 1: A shorter formulation of the flood algorithm.

Data: N , total number of agents

roundCtr ← 0

while roundCtr ≤ N do

Y (i) ← Listen ()

if Y
(i)
j 6= Null, ∀j then

a(i) ← a

else

a(i) ← Null

end

Send (a(i), N (i))

roundCtr← roundCtr + 1

end

Chapter 3

Sensor Deployment under Power

Limitations

Unfortunately, a drawback to mobile networks is that of increased power

consumption. Power-aware algorithms have been the subject of extensive research

in static sensor networks and mobile middleware, see [66, 53]. However, limited

work on power constraints and deployment has been done in the multi-vehicle sen-

sor network field. The work of [27] and [85] utilize ordinary Voronoi diagrams and

a discrete algorithm to show convergence through simulations. Energy consider-

ations enter in their work as total distance traveled until convergence. Another

related result from [52] considers a network of agents performing scan lines over a

region of interest with energy and time constraints in mind. More involved vehicle

energy dynamics are considered in that work, and they address the relevant prob-

lem of speed management as well as optimizing the number of agents necessary to

provide adequate coverage in their deployment scheme.

We present an alternative approach to the distributed deployment problem

of mobile sensor networks in which agents have limited energy budgets to move.

Agents consider their energy level as well as those of their neighbors in determining

their coverage ability. We accomplish this by limiting the coverage range of each

agent to be proportional to the current energy of each agent. This leads to a

novel partition of the environment into limited-range, generalized Voronoi regions

that produces a more balanced region assignment. Since agents are continuously

20

21

moving, these limited-range coverage constraints are dynamically shrinking. We

also adopt energy expenditure dynamics that assume the predominant force acting

on the vehicles is drag. Our algorithms seek to maximize objective functions

involving: (i) the quantity of area covered, and (ii) the quality of coverage as

defined by standard Locational Optimization theory [56].

The new partitions become useful in order to obtain gradient algorithms

that guarantee local maximization of the objective functions. The maximization of

the objective functions will then require that agents tune their speed as prescribed

by the gradient information. The analysis provided here extends and merges pre-

vious work in [15], where coverage algorithms for agents with homogeneous, static

sensor ranges is studied, and in [36], where energy partitions for coverage are ini-

tially explored disregarding energy constraints on mobility. More precisely, the

work in [15] is extended to heterogeneous sensing radii that change dynamically

as agents spend energy. We include simulations of each algorithm that show that

the corresponding objective functions are locally maximized.

In Section 3.1 we define the problem and present the objective functions

that we would like to maximize. In Section 3.2, we present the partition necessary

to implement the maximization of the functions in a distributed way with energy

constraints. We analyze the objective functions in Section 3.3, and present their

gradient directions. Section 6.2 introduces a common gradient ascent algorithm

with guaranteed performance to apply to each case. In addition, we address some

issues that may arise with such flows. We present simulation results in Section 3.5

and discuss the performance of the algorithms.

3.1 Problem definition

Let P = (p(1), . . . , p(N)) ∈ QΛ be the location of N sensors, each moving

in Q. We interchangeably refer to the elements of the network as sensors, agents,

vehicles, or robots. The sensors have an associated energy content E(i) such that

0 ≤ E(i) ≤ Emax, for all i ∈ {1, . . . , N}. As agents move, their energy reserve will

change. We propose the following simple agent dynamics in the augmented state

22

(p(i), E(i)) ∈ Q× R≥0:

ṗ(i) = u(i) , Ė(i) = −g(i)(‖ṗ(i)‖) , (3.1)

where ṗ(i) denotes the velocity of agent i such that ‖ṗ(i)‖ ∈ [0, vmax], u
(i) is the con-

trol input, and g(i) : [0, vmax]→ R≥0 is any increasing function such that g(i)(x) = 0

only at x = 0. Intuitively, g(i)(x) captures the fact that energy expenditure in-

creases as velocity increases. We will suppose that g(i) = g for all i ∈ {1, . . . , N}.
We wish to deploy the robots to maximize a performance metric that quan-

tifies coverage and employs the travel ranges for agents. In the most general sense,

and motivated by a Locational Optimization approach [56], we seek to maximize

a general objective function

H(P,W) =

∫

Q

max
i∈{1,...,N}

f (i)(dw(i)(q, p(i)))φ(q)dq , (3.2)

where f (i) : R→ R is a non-increasing function associated with the sensing quality

of agent i, and dw(i) : RΛ × RΛ → R is some metric function weighted by a scalar

w(i) ∈ R, for all i ∈ {1, . . . , N}. Together, f (i)(dw(i)) describes the ability of a

particular agent to sense points as a function of the generalized distance dw(i). The

scalars w(i) will be related to the travel ranges for each agent. Depending on the

interpretation of coverage, H can be further specialized as we see in the following.

3.1.1 Energy-aware coverage by mobile sensors

In [16], the metric dw(i)(q, p(i)) in (3.2) was taken to be the square of the

Euclidean distance. Thus, dw(i)(q, p(i)) = ‖q − p(i)‖2 and there is no weight asso-

ciated with this metric. We propose a natural extension of the results of [16] by

considering a metric weighted by the energy content of each vehicle. As will be

explained in a later section, we will choose

dE(i),pow(q, p
(i)) = ‖q − p(i)‖2 − (E(i))2 , (3.3)

dE(i),mult(q, p
(i)) =

1

(E(i))2
‖q − p(i)‖2 , (3.4)

called, respectively, the power-weighted metric and the multiplicatively-weighted

metric, see [56].

23

By modifying the Euclidean distance as in (3.3), (3.4), notice that a point

q appears farther away if the energy level of an agent is lower. The associated

Locational Optimization function for f (i)(x) = −x, becomes:

Hea(P,W) =

∫

Q

max
i∈{1,...,N}

{−dw(i)(q, p(i))}φ(q)dq . (3.5)

As will be shown, the max function induces a partition of the entire space

Q. Under energy-aware coverage, the energy content of each vehicle serves to

determine (through dw(i)) the points q ∈ Q that should belong to an agent. The

energy-aware method, as its name implies, does not place any hard constraint on

coverage, i.e.: all points q ∈ Q are reachable by any agent, but there is one agent

who is closest to q (in the sense of dw(i)) and who should be assigned to cover q.

3.1.2 Energy-limited coverage by mobile sensors

Now we consider the situation where energy content places a restriction on

which points q ∈ Q can be reached, in contrast with energy-aware coverage. If an

agent has very little energy, it should not be feasible to reach far away points in

Q, and we explicitly account for this through energy-limited coverage.

We now formulate the notion of travel range, the set of points that an agent

can reach if it travels in a straight line at any fixed velocity ‖ṗ(i)‖ = v(i) ∈ (0, vmax]

before running out of energy. Without loss of generality, assume p(i)(t0) = 0 and

E(i)(t0) > 0 at some initial time t0. We wish to find

R = inf
v(i)∈(0,vmax]

‖p(i)(T)‖ , (3.6)

where T > 0 satisfies E(i)(T) = 0. From (4.4), and for a constant velocity different

from zero, we have that E(i)(t)−E(i)(t0) = −g(v(i))(t− t0), and so

T =
E(i)(t0)

g(v(i))
+ t0 . (3.7)

Integrating ṗ(i) from (4.4), we get p(i)(t) = (t − t0)v(i). From (3.6) and (3.7), we

obtain

R = inf
v(i)∈(0,vmax]

∥
∥
∥
∥

E(i)(t0)v
(i)

g(v(i))

∥
∥
∥
∥
. (3.8)

24

Note that if g(x) is a polynomial satisfying g(0) = 0, then (3.8) is well-defined. In

addition, for any other velocity profile ṽi(t) along a straight line path, the resulting

travel range R̃ is such that R̃ ≥ R.

Suppose that the forces acting on any individual vehicle come from either

the motor output f (i) or drag, Fi = f (i)−βṗ(i), where β > 0. If we consider a simple

electric motor, the torque output is proportional to voltage supplied to the motor.

Furthermore, the power consumed is proportional to voltage squared. Thus, there

is a quadratic relationship between vehicle acceleration and power consumed.

For simplicity, we assume that drag is the predominant force acting on the

vehicle throughout deployment. That is, the initial effect of accelerating from rest

is small compared to the rest of the deployment process with vehicles traveling at

constant speed. The following energy dynamics for each vehicle would then be:

Ė(i) = −‖ṗ(i)‖2 = −‖u(i)‖2 , i ∈ {1, . . . , N} , (3.9)

or g(x) = x2. For simplicity, let vmax = 1, and with the assumed energy dynam-

ics (3.9) along with (3.8), the travel range is R = E(i)(t0).

Under energy-limited coverage, we propose that in order for an agent i to

be able to cover a point q ∈ Q, agent i must be able to reach q with its current

energy level. Under the previous assumptions, the range of an agent i ∈ {1, . . . , N}
is then equal to the amount of energy E(i) that it has. Let B(i)(E(i)) be a closed

ball centered at p(i) with radius E(i) and let S(i) = ∂B(i)(E(i)) be a sphere centered

at p(i) with radius E(i). We will let R = Q ∩ ⋃N
i=1 B

(i)(E(i)) denote the set of

all covered points by the group of agents. We now introduce various objective

functions with the energy constraint in mind.

Area Coverage

The simplest problem to solve given the energy-limited constraint is to max-

imize area covered. Therefore, we can set f (i)(x) = 1[0,E(i)](x) (i.e., the indicator

function of the set [0, E(i)]) and dw(i)(q, p(i)) = ‖q−p(i)‖. Under these assumptions,

the general objective function (3.2) becomes:

Harea(P,E) =

∫

Q

max
i∈{1,...,N}

1[0,E(i)](‖q − p(i)‖)φ(q)dq =
∫

R

φ(q)dq . (3.10)

25

Centroidal Coverage

We can combine the energy-limited range with a typical objective function

from Locational Optimization to obtain:

Hcent(P,E) =

∫

R

max
i∈{1,...,N}

{−dE(i)(q, p(i))}φ(q)dq . (3.11)

This has the interpretation of minimizing the mean distance from a point q to an

agent at p(i).

Mixed Coverage

We can combine (5.4) and (3.11) to strike a balance between quantity of

coverage and quality of coverage. We introduce two weights, κarea, κcent, to empha-

size one over the other. The mixed coverage objective function is:

Hmix(P,E) = κareaHarea(P,E) + κcentHcent(P,E) . (3.12)

3.2 Limited-range, generalized Voronoi regions

and associated proximity graphs

In order to devise local deployment rules for each agent, it is convenient to

assign different regions of the space to them. Similarly as in [15, 36], the regions

of dominance should reflect each agent’s ability to cover an area. These assign-

ments will also define the graphs that determine the degree of decentralization

of the proposed algorithms. In this section we introduce novel partitions of R,
Dpow = {D(1)

pow, . . . , D
(N)
pow} and Dmult = {D(1)

mult, . . . , D
(N)
mult}, based on energy motion

constraints.

3.2.1 Global partitions determined from the intersection

of spheres

Let us consider a configuration like the one shown in Figure 3.1 where in R2,

every two spheres S(i), S(j) have an intersection S(i) ∩ S(j) at two points. Similar

26

configurations can be considered in higher dimensions, but the results that follow

are general. A possibility is to define D
(i)
pow as the region given by the intersection of

B(i)(E(i)) with halfplanes, H(p(i), p(j)), ∀ i 6= j. The halfplanes H(p(i), p(j)) contain

p(i) and have as a boundary the line passing through the points in S(i)∩S(j). Using

a halfplane that contains all such points provides a computationally convenient

method of assigning regions of dominance. The halfplanes that define boundaries

between two regions can also be thought of as the convex hull of S(i) ∩ S(j) in

the case where |S(i) ∩ S(j)| > 1. This intuitive construction can be extended to

cases where the spheres S(i), S(j) are tangent or have zero intersection through the

observation provided in the following lemma.

D
(1)
pow

D
(2)
pow

D
(3)
pow

D
(4)
pow

1

2

3
4

Figure 3.1: Proposed partition of R. The individual spheres are shown in dotted
lines, along with the boundaries of D

(i)
pow in solid lines.

Lemma 4. The intersection of halfplanes determined by the intersection of spheres

S(i) generated by n agents with positions p(i) and energies E(i) for all i ∈ {1, . . . , N}
induces a partition of RΛ which is the power-weighted Voronoi diagram (PWVD),

Vpow = (V
(1)
pow, . . . , V

(n)
pow),

V (i)
pow = {q ∈ R

Λ | ‖q − p(i)‖2 − (E(i))2 ≤ ‖q − p(j)‖2 − (E(j))2} , (3.13)

for all i ∈ {1, . . . , N} found in [56].

Proof. While the following proof is done in the case of R2, the extension to R
3

is straightforward, as is the extension to R
Λ. Now we examine two intersecting

27

spheres in order to formulate some expression for the boundary points from the

Lemma statement,

co(S(i) ∩ S(j)) = {q ∈ R
Λ | ‖q − p(i)‖2 − (E(i))2 = ‖q − p(j)‖2 − (E(j))2, ∀ i 6= j} .

E(i)
E(j)

r(i) r(j)

s(i) s(j)

p(i) p(j)

r

h

hs

Figure 3.2: Diagram for the derivation of the Voronoi boundary location.

Examining Figure 3.2, we can see that:

{

r(i) − r(j) = r ,

(E(i))2 − ‖r(i)‖2 = (E(j))2 − ‖r(j)‖2 .

Note that r(i), r(j) and r are vectors, so if E(j) > ‖r‖ in Figure 3.2, then the above

relationships still hold. We solve for r(j) in the first equation and substitute into

the second:

(E(i))2 − ‖r(i)‖2 = (E(j))2 − ‖r(i) − r‖2 = (E(j))2 − ‖r(i)‖2 + 2rTr(i) − ‖r‖2 .

Since r and r(i) point in the same direction, their inner product is the product of

their individual magnitudes,

rTr(i) = ‖r‖‖r(i)‖ = (E(i))2 − (E(j))2 + ‖r‖2
2

⇒ r(i) =
(E(i))2 − (E(j))2 + ‖r‖2

2‖r‖
r

‖r‖ .

28

Note that even though we considered the intersection as in Figure 3.2, we can

arrive at a similar conclusion with a different type of intersection (i.e., one leading

to an obtuse triangle.)

We now return to the case illustrated in Figure 3.2. Points along each

boundary co(S(i) ∩ S(j)) satisfy

{

‖r(i)‖2 + ‖hs‖2 = ‖s(i)‖2 ,
‖r(j)‖2 + ‖hs‖2 = ‖s(j)‖2 .

Subtracting the two equations, we get

‖s(i)‖2 − ‖s(j)‖2= ‖r(i)‖2 − ‖r(j)‖2 = ‖r(i)‖2 − ‖r(i) − r‖2

= ‖r(i)‖2 − ‖r(i)‖2 + 2r(i)
T

r − ‖r‖2

= 2
(E(i))2 − (E(j))2 + ‖r‖2

2‖r‖ ‖r‖ − ‖r‖2 = (E(i))2 − (E(j))2 .

This gives our final result,

‖s(i)‖2 − (E(i))2 = ‖s(j)‖2 − (E(j))2 .

In other words, points q ∈ co(S(i) ∩ S(j)) satisfy ‖q − p(i)‖2 − (E(i))2 = ‖q −
p(j)‖2− (E(j))2. Note that a set of points, q ∈ RΛ that satisfy this property, exists

regardless of whether or not S(i), S(j) intersect. In fact, this boundary requirement

is found in [56] as the defining property of the power-weighted Voronoi partition,

with a weighting factor of (E(i))2 for each generating point p(i).

It can be seen [56] that the boundary of a PWVD region is made of straight

lines in two dimensions, or (hyper-) planes in higher dimensions. Thus, each of the

V
(i)
pow is convex. By construction, this indeed creates a partition of RΛ. According

to [56], generator points p(i) may fall outside their corresponding region V
(i)
pow. See

Figure 3.3 for an illustration of the PWVD, Vpow.
Recall from Section 3.1 that if v(i) = v(j) = vmax, then two agents must

spend all of their energy to reach a point at the intersection of the energy spheres

S(i) ∩ S(j). However, both agents do not spend a proportionately equal amount of

energy to reach points along the interior of the boundary segments ∆e
ij ∩B(i)(E(i)).

For this to be the case, the property that needs to be satisfied is 1
(E(i))2

‖q−p(i)‖2 =

29

1
E(j)‖q − p(j)‖2. In fact, this corresponds to the multiplicatively-weighted Voronoi

diagram (MWVD), Vmult = {V (1)
mult, . . . , V

(n)
mult}, such that:

V
(i)
mult =

{

q ∈ R
Λ | 1

(E(i))2
‖q − p(i)‖2 ≤ 1

(E(j))2
‖q − p(j)‖2

}

, i ∈ {1, . . . , N} .
(3.14)

Thus, given v(i) = v(j) = vmax, agents spend proportionately equal amounts of

energy to reach boundary points, ∆
(ij)
mult = V

(i)
mult ∩ V

(j)
mult. According to [56], for

this type of partition, generator points p(i) lie in their regions, which may not be

convex, may have holes and be disconnected. The boundaries of these regions are

composed of circular arcs.

Figure 3.3 compares the PWVD with the MWVD, when intersected with a

convex polytope Q. Notice that the intersected regions of Vpow are convex whereas

the ones associated with Vmult are not.

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

Figure 3.3: Comparison of the PWVD (left) and MWVD (right). Energy contents
are shown in parentheses. Observe that agent 2 is outside its region in the power-
weighted case.

For the remainder of this chapter, we will focus primarily on results using

the MWVD. When, applicable, we state the analogous results using the PWVD

without proof.

30

3.2.2 Limited-range partitions

In order to partition R = Q∩⋃N
i=1B

(i)(E(i)), we propose that each element

of Dmult = {D(1)
mult, . . . , D

(N)
mult} be defined as D

(i)
mult = Q ∩ B(i)(E(i)) ∩ V (i)

mult, i ∈
{1, . . . , N}. Agent regions of dominance, D

(i)
mult, will have boundaries that consist

of Voronoi face segments ∆
(ij)
mult∩B(i)(E(i))∩Q, boundary segments ∂Q∩B(i)(E(i))∩

V
(i)
mult, and energy radius arcs. We will refer specifically to those energy arcs in

∂D
(i)
mult as Arcs(D

(i)
mult).

In addition, the quantities M
(i)
mult and C

(i)
mult will denote the mass and cen-

troid of either V
(i)
mult or D

(i)
mult. For example,

M
(i)
mult =

∫

D
(i)
mult

φ(q)dq , C
(i)
mult =

1

M
(i)
mult

∫

D
(i)
mult

qφ(q)dq .

It should be clear from the context whether M
(i)
mult and C

(i)
mult refer to the mass and

centroid of V
(i)
mult or D

(i)
mult. In addition, we also define the moment of inertia of

V
(i)
mult or D

(i)
mult as,

I
(i)
mult =

∫

D
(i)
mult

‖q − p(i)‖2φ(q)dq .

As defined, it is not immediately clear that the collections Dmult are parti-

tions of R. This is proved in the next theorem.

Theorem 5. Let Dmult = {D(1)
mult, . . . , D

(n)
mult} with D

(i)
mult = B(i)(E(i)) ∩ V (i)

mult ∩ Q.
Then, Dmult are partitions of R = Q ∩⋃N

i=1 B
(i)(E(i)).

Proof. We prove the result for Dmult, being the proof for Dpow is analogous. Since

the MWVD is a partition of RΛ, we have that V
(i)
mult

◦ ∩ V (j)
mult

◦
= ∅, for all i 6= j.

Since D
(i)
mult = B(i)(E(i)) ∩ V (i)

mult ∩Q, then

D
(i)
mult

◦
= B

(i)(E(i)) ∩ V (i)
mult

◦
= B

(i)(E(i))
◦ ∩ V (i)

mult

◦ ∩Q◦ .

This implies that

D
(i)
mult

◦ ∩D(j)
mult

◦
= B

(i)(E(i))
◦ ∩ V (i)

mult

◦ ∩ B
(j)(E(j))

◦ ∩ V (j)
mult

◦ ∩Q = ∅ .

Thus we have proved the first defining condition of a partition.

31

Now we must show
⋃N
i=1D

(i)
mult = Q ∩ ⋃N

i=1 B
(i)(E(i)). Expanding the left-

hand side,

N⋃

i=1

D
(i)
mult =

N⋃

i=1

(V
(i)
mult ∩ B

(i)(E(i)) ∩Q) = Q ∩
N⋃

i=1

B
(i)(E(i)) .

Thus it is sufficient to show
⋃N
i=1(V

(i)
mult ∩ B(i)(E(i))) =

⋃N
i=1 B

(i)(E(i)). Note also

that

B
(i)(E(i)) = B

(i)(E(i)) ∩
(

V
(i)
mult ∪ (V

(i)
mult)

C
)

= (B(i)(E(i)) ∩ V (i)
mult) ∪

(

B
(i)(E(i)) ∩ (V

(i)
mult)

C
)

.

Taking the union over all i,

N⋃

i=1

B
(i)(E(i)) =

(
N⋃

i=1

(B(i)(E(i)) ∩ V (i)
mult)

)

∪
(

N⋃

i=1

(

B
(i)(E(i)) ∩ (V

(i)
mult)

C
)
)

.

If we show that
(

B(i)(E(i)) ∩ (V
(i)
mult)

C
)

⊂ ⋃

j 6=iD
(j)
mult, then we will have

proved the requirement. Let A(i) = B
(i)(E(i)) ∩ (V

(i)
mult)

C , and note that A(i) may

not be connected, however ∂A(i) =
⋃

j∈N
(i)
mult

(S(i) ∩ (V
(i)
mult)

C) ∪ (B(i)(E(i)) ∩∆
(ij)
mult).

Consider a point q ∈ A(i). Because Vmult is a partition, there exists a jq 6= i

such that,

1

(E(j))2
‖q − p(j)‖2 ≥ 1

(E(jq))2
‖q − p(jq)‖2 , ∀j 6= jq .

On the other hand q ∈ A(i) implies ‖q− p(i)‖2 ≤ (E(i))2. Taking the first equation

for j = i and applying the stated inequality, we get

‖q − p(jq)‖2 ≤ 1 · (E(jq))2 ≤ (E(jq))2 .

This implies that q ∈ D(jq)
mult. Since this argument is valid for any q ∈ A(i), we have

that A(i) ⊆ ⋃j 6=iD
(j)
mult.

The two partitions of R yield similar results as can be seen in Figure 3.4.

Generally speaking, the power-weighted partition Dpow is a good approximation to

the multiplicatively-weighted partition Dmult if the agents are spaced far enough

apart, or if the energy contents of neighbors are similar.

32

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

Figure 3.4: Comparison of the limited range power-weighted (left) and
multiplicatively-weighted (right) partitions, for the same set of points from Fig-
ure 3.3. Energy contents are shown in parentheses.

3.2.3 Communication graphs

As from [56] and [15], these previously described generalized Voronoi regions

also have a dual graph. It is over this graph that communication between agents

must occur. In what follows, we exactly define the notion of the neighbor of agent

i, which is related to the dual graph.

From now on, we adopt the following nomenclature. When two Voronoi

regions V
(i)
mult and V

(j)
mult are adjacent (i.e., they share an edge), p(i) is called a

(multiplicatively-weighted) Voronoi neighbor of p(j). The set of indices of the

MW Voronoi neighbors of p(i) is denoted by N (i)
mult. We define the (i, j) face as

∆
(ij)
mult = V

(i)
mult ∩ V

(j)
mult.

Note also that a definition for N (j)
mult may be obtained from the dual of

the MWVD, the MW Delaunay graph, GD, mult. The graph (P,E) → GD, mult =

(P, ED, mult(P,E)) is a type of proximity graph (see [15]) consisting of the vertices

P and the edges ED, mult(P,E) such that

ED, mult(P,E) = {(p(i), p(j)) ∈ P × P \ diag(P × P) | V (i)
mult ∩ V

(j)
mult 6= ∅} .

In this way, we can define the neighbors of p(i) in GD, mult as:

N (i)
mult = {p(j) ∈ P | (p(i), p(j)) ∈ ED, mult(P,E)} . (3.15)

33

The limited-range counterparts of the MWVD will also have similar dual

graphs. These are the energy-limited MW graph GLD,mult = (P, ELD,mult(P,E)).

The edge set is defined as:

ELD,mult(P,E) = {(p(i), p(j)) ∈ P × P \ diag(P × P) |D(i)
mult ∩D

(j)
mult 6= ∅ ,

‖p(i) − p(j)‖ ≤ E(i) + E(j)} .

This allows the definition of the set of neighbors:

N (i)
LD,mult = {p(j) ∈ P | (p(i), p(j)) ∈ ELD,mult(P,E)} = {p(j) ∈ P |D(i)

mult ∩D
(j)
mult 6= ∅} .

3.3 Objective function gradient characterization

In this section we derive the gradient direction for each of the objective

functions that we have introduced previously. These gradients define the proper

direction of flow in order to optimize coverage. Before we begin, we restate the

objective functions from Section 3.1 in a form that facilitates analysis.

The metric that generates the MWVD is determined from the metric (3.4).

We present the new forms of (3.5), (5.4), (3.11) (upon which the remaining objec-

tive function (3.12) is based) using the MWVD here:

Hea(P,E) =

∫

Q

max
i∈{1,...,N}

{−dE(i),mult(q, p
(i))}φ(q)dq

=
N∑

i=1

∫

V
(i)
mult

− 1

(E(i))2
‖q − p(i)‖2φ(q)dq , (3.16)

Harea(P,E) =

∫

R

φ(q)dq =
N∑

i=1

∫

D
(i)
mult

φ(q)dq , (3.17)

Hcent(P,E) =

∫

R

max
i∈{1,...,N}

{−dE(i),mult(q, p
(i))}φ(q)dq

=

N∑

i=1

∫

D
(i)
mult

− 1

(E(i))2
‖q − p(i)‖2φ(q)dq . (3.18)

Before computing the gradients we would like to note the following result.

Lemma 6. The objective functions (3.16)–(3.18) are continuously differentiable

with respect to p(i) and E(i).

34

Proof. This is a result of Proposition 1.6 in [15]. Even though regions of MWVD

may not be star-shaped, each individual region V
(i)
mult∩Q andD

(i)
mult can be composed

of a finite union of star-shaped sets, which makes such regions fall under the scope

of the result from [15]. Additionally, the function H is piecewise smooth since

it is smooth over each V
(i)
mult, a further requirement in [15]. We also present φ to

be the bounded support of Q, thus it is integrable over Q. This satisfies all the

requirements of Proposition 1.6, so then the objective functions (3.16)–(3.18) are

are continuously differentiable.

We now state the gradient expressions for these functions.

Proposition 7. Consider the objective functions Harea, Hcent, and Hmix based

on (3.16), (3.17), and (3.18) using the partition Dmult and metric (3.4). Let X =

(X1, . . . , XN) be a general vector field where Xi = (Xp(i), XE(i)) : Q×R→ RΛ×R

for all i ∈ {1, . . . , N}. Then, the Lie derivatives of Hea, Harea, Hcent, and Hmix

along the flow X are given by:

LXHea =

N∑

i=1

2M
(i)
mult

(E(i))2
(C

(i)
mult − p(i))TXp(i) +

2I
(i)
mult

(E(i))3
XE(i) , (3.19)

LXHarea =
N∑

i=1

(
∫

Arcs(D
(i)
mult

)

φ(γ(i))[n̂T

out(γ
(i))]Tdγ(i)

)

Xp(i)

+

(
∫

Arcs(D
(i)
mult

)

φ(γ(i))dγ(i)

)

XE(i) , (3.20)

LXHcent =

N∑

i=1

(

2M
(i)
mult

(E(i))2
(C

(i)
mult − p(i))T −

∂Harea

∂p(i)

)

Xp(i) (3.21)

+

(

2I
(i)
mult

(E(i))3
− ∂Harea

∂E(i)

)

XE(i) , (3.22)

LXHmix =κareaLXHarea + κcentLXHcent , (3.23)

Proof. We will use the conservation of mass law in [15]. We will perform analysis

of the objective functions (3.16), (3.17), and (3.18), and note that the gradient

formulations for the remaining function Hmix follows from those results.

35

Energy-aware (3.16)

We have that:

∂Hea

∂p(i)
=

N∑

j=1

∂

∂p(i)

∫

V
(j)
mult

− 1

(E(j))2
‖q − p(j)‖2φ(q)dq

=
N∑

j=1

∫

V
(j)
mult

− 1

(E(j))2
∂

∂p(i)
[
‖q − p(j)‖2

]
φ(q)dq

+

∫

∂V
(j)
mult

−‖γ
(j) − p(j)‖2
(E(j))2

φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂p(i)
dγ(j)

= 2

∫

V
(i)
mult

1

(E(i))2
(q − p(i))Tφ(q)dq

+

∫

∂V
(i)
mult

−(E
(i))2

(E(i))2
φ(γ(i))n̂T

out(γ
(i))

∂γ(i)

∂p(i)
dγ(i)

+
∑

j∈Ni

∫

∂V
(j)
mult

−(E
(j))2

(E(j))2
φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂p(i)
dγ(j) .

Since we take the derivative with respect to p(i), certainly the boundary V
(i)
mult

changes. These boundaries are shared by neighboring Voronoi regions V
(j)
mult, j ∈

N (i)
mult. Therefore, along the boundaries ∂V

(j)
mult that each region V

(j)
mult has in common

with V
(i)
mult, there is a change as well. However, the parts of the boundaries ∂V

(j)
mult,

j ∈ N (i)
mult that are not shared with region V

(i)
mult are not affected by a change in p(i),

so the derivative ∂γ(j)

∂p(i)
= 0 along those sections. For the sections of ∂V

(j)
mult that are

shared with V
(i)
mult, the derivatives are equal: ∂γ(j)

∂p(i)
= ∂γ(i)

∂p(i)
. Additionally, the metric

that defines the partition are equal at the boundaries dE(i),mult = dE(j),mult. The

only difference is the direction of the outwards-pointing normal vector, and we have

n̂out(γ
(i)) = −n̂out(γ

(j)) along the shared boundary for all j ∈ N (i)
mult. Therefore,

the integrals along shared boundaries vanish, leaving the final result:

∂Hea

∂p(i)
= 2

∫

V
(i)
mult

1

(E(i))2
(q − p(i))Tφ(q)dq .

36

A similar procedure leads to the energy derivative:

∂Hea

∂E(i)
=

N∑

j=1

∂

∂E(i)

∫

V
(j)
mult

− 1

(E(j))2
‖q − p(j)‖2φ(q)dq

=

N∑

j=1

∫

V
(j)
mult

−‖q − p(j)‖2φ(q) ∂

∂E(i)

[
1

(E(j))2

]

dq

+

∫

∂V
(j)
mult

−‖γ
(j) − p(j)‖2
(E(j))2

φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂E(i)
dγ(j)

= 2

∫

V
(i)
mult

1

(E(i))3
‖q − p(i)‖2φ(q)dq

+
∑

j∈Ni

∫

∂V
(j)
mult

−(E
(j))2

(E(j))2
φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂E(i)
dγ(j) .

Again, the integral along the boundaries vanish, giving the final result:

∂Hea

∂p(i)
=

2M
(i)
mult

(E(i))2
(C

(i)
mult − p(i))T ,

∂Hea

∂E(i)
=

2I
(i)
mult

(E(i))3
.

Area coverage (3.17)

We must calculate the expression for ∂Harea

∂p(i)
and ∂Harea

∂E(i) . Applying the con-

servation of mass law once again, we have

∂Harea

∂p(i)
=

∂

∂p(i)

N∑

j=1

∫

D
(j)
mult

φ(q)dq

=
N∑

j=1

∫

Dj

∂

∂p(i)
φ(q)dq +

N∑

j=1

∫

∂D
(j)
mult

φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂p(i)
dγ(j)

=

∫

∂D
(i)
mult

φ(γ(i))n̂T

out(γ
(i))

∂γ(i)

∂p(i)
dγ(i)

+
∑

j∈N
(i)
LD,mult

∫

∂D
(j)
mult

φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂p(i)
dγ(j) .

Each region may have boundaries composed of circular energy arcs or MW

Voronoi faces. Over the set of shared faces ∆
(ij)
mult, for all j ∈ N

(i)
LD,mult, note that

the normal vectors n̂T

out(γ
(i)) = −n̂T

out(γ
(j)). Therefore, the integrals along shared

boundaries vanish, leaving the integration over the energy arcs of D
(i)
mult,

∂Harea

∂p(i)
=

∫

Arcs(D
(i)
mult)

φ(γ(i))n̂T

out(γ
(i))

∂γ(i)

∂p(i)
dγ(i) . (3.24)

37

From the definition of D
(i)
mult, Arcs(D

(i)
mult) are a fixed distance with respect to

the generating point, p(i). Then, the change in position of the arcs is equal to the

change in position of the point p(i). Therefore, the derivative ∂γ(i)

∂p(i)
= I. From (3.24)

we then have,
∂Harea

∂p(i)
=

∫

Arcs(D
(i)
mult)

φ(γ(i))n̂T

out(γ
(i))dγ(i) . (3.25)

Similarly, we compute the derivative with respect to E(i):

∂Harea

∂E(i)
=

∫

Arcs(D
(i)
mult)

φ(γ(i))
∂γ(i)

∂E(i)
n̂T

out(γ
(i))dγ(i) .

Note that the boundary, γ(i), grows and shrinks proportional to the normal as E(i)

changes. Therefore, ∂γ(i)

∂E(i) = n̂out(γ
(i)) and

∂Harea

∂E(i)
=

∫

Arcs(D
(i)
mult)

φ(γ(i))‖n̂out(γ
(i))‖2dγ(i) =

∫

Arcs(D
(i)
mult)

φ(γ(i))dγ(i) . (3.26)

Centroidal coverage (3.18)

First take the derivative wrt p(i) using conservation of mass law:

∂Hcent

∂p(i)
=

N∑

j=1

∂

∂p(i)

∫

D
(j)
mult

− 1

(E(j))2
‖q − p(j)‖2φ(q)dq

=

N∑

j=1

∫

D
(j)
mult

− 1

(E(j))2
∂

∂p(i)
[
‖q − p(j)‖2

]
φ(q)dq

+

∫

∂D
(j)
mult

−‖γ
(j) − p(j)‖2
(E(j))2

φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂p(i)
dγ(j)

= 2

∫

D
(i)
mult

1

(E(i))2
(q − p(i))Tφ(q)dq

+

∫

∂D
(j)
mult

−‖γ
(j) − p(j)‖2
(E(j))2

φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂p(i)
dγ(j)

+
∑

j∈Ni

∫

∂D
(j)
mult

−(E
(j))2

(E(j))2
φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂p(i)
dγ(j) .

For similar reasons as in the energy-aware case, the integrals along the shared

Voronoi faces vanish, leaving only the integral along the energy radius arcs centered

38

at p(i). We then have

∂Hcent

∂p(i)
= 2

∫

D
(i)
mult

1

(E(i))2
(q − p(i))Tφ(q)dq −

∫

Arcs(D
(i)
mult)

n̂T

out(γ
(i))φ(q)dγ(i)

=
2M

(i)
mult

(E(i))2
(C

(i)
mult − p(i))T −

∂Harea

∂p(i)
.

The energy derivative follows similarly,

∂Hcent

∂E(i)
=

N∑

j=1

∂

∂E(i)

∫

D
(j)
mult

− 1

(E(j))2
‖q − p(j)‖2φ(q)dq

=

N∑

j=1

∫

D
(j)
mult

−‖q − p(j)‖2φ(q) ∂

∂E(i)

[
1

(E(j))2

]

dq

+

∫

∂D
(j)
mult

−‖γ
(j) − p(j)‖2
(E(j))2

φ(γ(j))n̂T

out(γ
(j))

∂γ(j)

∂E(i)
dγ(j)

=
2I

(i)
mult

(E(i))3
−
∫

Arcs(D
(i)
mult)

‖n̂T

out(γ
(i))‖2φ(γ(i))dγ(i) = 2I

(i)
mult

(E(i))3
− ∂Harea

∂E(i)
.

Remark 8. The area coverage result (3.20) and its PWVD analogue can be seen

as a generalization of a limited sensing coverage problem in [15] for a network of

heterogeneous sensors with different and constant sensing ranges Ri. The corre-

sponding sensing range would satisfy Ri = (E(i))2. However, since this sensing

range is fixed, the Lie derivative will not have a second term involving energy. We

would simply have

dHarea

dt
=

N∑

i=1

(
∫

Arcs(D
(i)
mult)

φ(γ(i))[n̂T

out(γ
(i))]Tdγ(i)

)

ṗ(i) ,

which extends the result found in [15]. •

Remark 9. In the area-maximizing case,Harea, the gradient
∂Harea

∂p(i)
points outwards

in the direction that is the most “open”. However, for the “centroidal” case, Hcent,

the opposite term appears. For most choices of φ, this has a detrimental effect on

coverage as seen through simulations. Instead of deploying out over the domain

Q, agents tend to remain motionless or collect together. However, the mixed case,

Hmix with κarea = κcent negates this effect, and the gradient direction points exactly

39

towards the centroids, C
(i)
mult, for all i. It seems that a more natural extension of

the energy-aware case to the limited-range MWVD is Hmix instead of Hcent. •

The following is the analogue of Proposition 7 for the PWVD case. Take

caution, that the functions H in what follows are not the same as the H found in

Proposition 7.

Proposition 10. Given the objective functions Hea, Harea, Hcent, and Hmix, and a

general vector field X = (X1, . . . , Xn) where Xi = (Xp(i), XE(i)) : Q×R→ RΛ×R

for all i ∈ {1, . . . , N}, the Lie derivatives of Hea, Harea, Hcent, and Hmix are

LXHea =
N∑

i=1

(
2M (i)

pow(C
(i)
pow − p(i))T

)
Xp(i) + 2E(i)M (i)

powXE(i) , (3.27)

LXHarea =
N∑

i=1

(
∫

Arcs(D
(i)
pow)

φ(γ(i))[n̂T

out(γ
(i))]Tdγ(i)

)

Xp(i)

+

(
∫

Arcs(D
(i)
pow)

φ(γ(i))dγ(i)

)

XE(i) , (3.28)

LXHcent =

N∑

i=1

(
2M (i)

pow(C
(i)
pow − p(i))T

)
Xp(i) +

(
2E(i)M (i)

pow

)
XE(i) , (3.29)

LXHmix = κareaLXHarea + κcentLXHcent , . (3.30)

We refer the reader to the proof of Proposition 7, as it is similar. �

3.4 Gradient-ascent deployment algorithms

Once we have computed the gradient directions for each objective function,

we will apply a gradient-ascent control algorithm for each case. The resulting

control algorithms are extensions of Lloyd’s algorithm for quantization [43], and

are distributed in the sense of a (limited) Delaunay graph. Consider (4.4) with

ṗ(i) = k(p(i), E(i)) sat

(
∂H
∂p(i)

)

,

Ė(i) = −‖ṗ(i)‖2 ,
(3.31)

40

for all i ∈ {1, . . . , N}, where the saturation function is

sat(v) =







v , ‖v‖ ≤ 1 ,

v
‖v‖

, ‖v‖ > 1 .

Here the control gain k(p(i), E(i)) ≥ 0 serves to modulate the velocity of each agent

along its gradient climbing path.

LetH be any one of the objective functions analyzed in the previous section,

with the exception of Hcent as noted in Remark 9. Now we analyze the time

evolution of the corresponding objective function H with respect to (3.31). We

adopt the shorthand notation k(i) = k(p(i), E(i)). Combining the gradient direction

with the time derivatives above, we get the following time derivative:

dH
dt

=

N∑

i=1

∂H
∂p(i)

ṗ(i) +
∂H
∂E(i)

Ė(i)

=
N∑

i=1

k(i)
∂H
∂p(i)

· sat
(
∂H
∂p(i)

)

− (k(i))2
∂H
∂E(i)

∥
∥
∥
∥
sat

(
∂H
∂p(i)

)∥
∥
∥
∥

2

=

N∑

i=1

k(i) sat

(
∂H
∂p(i)

)

·
(
∂H
∂p(i)

− k(i) ∂H
∂E(i)

sat

(
∂H
∂p(i)

))

. (3.32)

Remark 11. Non-smooth dynamics are also possible:

ṗ(i) = k(p(i), E(i))

∂H
∂p(i)
∥
∥
∥
∂H
∂p(i)

∥
∥
∥

,

Ė(i) = −‖ṗ(i)‖2 = −k2(p(i), E(i)) .

Doing so would require the non-smooth analysis techniques found in [13]. We

would, however, arrive at the same convergence conclusions found in the next

subsections. •

Remark 12. The properties of the gradient of H as in Proposition 7 make the

associated law (3.31) distributed in the sense of the corresponding Delaunay graph.

The information that an agent needs to implement (3.31) is only the position and

energies of neighbors in the associated Delaunay communication graph. Moreover,

in the case of the energy-limited algorithm, it is spatially distributed due to the

travel range constraint.

41

With this information, an agent can correctly construct its region, D
(i)
mult.

A sufficient condition to achieve this is if p(j) can transmit to p(i) when ‖p(i) −
p(j)‖ ≤ 2Emax for all j 6= i. With this communication requirement, the control law

described in (3.31) is spatially distributed over the graph GLD,mult. •

3.4.1 Optimal gain selection

We wish that dH
dt
≥ 0 since we are maximizing the objective function. We

now derive a sufficient condition for k and also present an optimal choice for k.

Lemma 13. Given the model (4.4), (3.31), and an objective function H, the latter

is maximized if

0 ≤ k(p(i), E(i)) ≤
sat
(

∂H
∂p(i)

)

· ∂H
∂p(i)

∥
∥
∥sat

(
∂H
∂p(i)

)∥
∥
∥

2
∂H
∂E(i)

, (3.33)

for all i ∈ {1, . . . , N}. An optimal choice of k(p(i), E(i)) is then

k∗(p(i), E(i)) =
1

2

sat
(

∂H
∂p(i)

)

· ∂H
∂p(i)

∥
∥
∥sat

(
∂H
∂p(i)

)∥
∥
∥

2
∂H
∂E(i)

. (3.34)

Proof. In order for dH
dt
≥ 0 we require that each summand of (3.32) be positive.

Since k(p(i), E(i)) ≥ 0, we must have

∂H
∂p(i)

· sat
(
∂H
∂p(i)

)

− k(i) ∂H
∂E(i)

∥
∥
∥
∥
sat

(
∂H
∂p(i)

)∥
∥
∥
∥

2

≥ 0 .

Since ∂H
∂E(i) ≥ 0 in Propositions 10 and 7 (except for (3.22)), the formula in (3.33)

follows.

We are free to choose k subject to (3.33). In particular, we would like to

maximize each summand of (3.32) for each i. Taking the derivative with respect

to k, we have

∂H
∂p(i)

· sat
(
∂H
∂p(i)

)

− 2k(i)
∗ ∂H
∂E(i)

∥
∥
∥
∥
sat

(
∂H
∂p(i)

)∥
∥
∥
∥

2

= 0 ,

and the critical point condition for k(i) follows.

42

Remark 14. Different energy dynamics can be considered. That is, the consider-

ation of g(i)(x) different from x2 is possible as long as g(i)(0) = 0 and the g(i) are

sufficiently smooth. •

Although using (3.34) provides the quickest rate of convergence, it may

not be the best. Consider the situation shown in Figure 3.5, for the case where

the objective function is (5.4). Agent 4 has a small arc component compared to

its entire boundary. However with the area coverage gradient (3.28), the optimal

gain (3.34) remains constant since ∂Harea

∂p(i)
, ∂Harea

∂E(i) → 0 at the same rate. For this

reason, we would like k(i) to be chosen by the following constrained optimization

way: maximize each summand of (3.32) subject to k(i) ≤ ∂H
∂E(i) . Notice that this

quantity is of the form f(k(i)) = k(i)(c1 − k(i)c2), a concave parabola. With this

constraint, the optimum k(i)
∗
is then

k(i)
∗
= min







1

2

sat
(

∂H
∂p(i)

)

· ∂H
∂p(i)

∥
∥
∥sat

(
∂H
∂p(i)

)∥
∥
∥

2
∂H
∂E(i)

,
∂H
∂E(i)







. (3.35)

A simulation in Section 3.5 further discusses this choice. Another possibility is

k(i)
∗
,

k(i)
∗
= min







1

2

sat
(

∂H
∂p(i)

)

· ∂H
∂p(i)

∥
∥
∥sat

(
∂H
∂p(i)

)∥
∥
∥

2
∂H
∂E(i)

,
E(i)

Emax







. (3.36)

This choice of E(i)

Emax
is motivated from [36]. With k(i)

∗ ≤ E(i)

Emax
, it can be shown that

an individual agent will not run out of energy in finite time. For the MWVD case,

this factor appears naturally in the optimal gain (3.34). We can impose a similar

constraint for the base return flow such that if ‖p(i) − q0‖ ≤ E(i), then the vehicle

at p(i) will always be able to return to q0. We can choose

k(i)
∗
= min







1

2

sat
(

∂H
∂p(i)

)

· ∂H
∂p(i)

∥
∥
∥sat

(
∂H
∂p(i)

)∥
∥
∥

2
∂H
∂E(i)

, 1







. (3.37)

This is because when k(i)
∗
= 1, ‖ṗ(i)‖ ≤ 1, which insures that a vehicle can reach

any point in its travel range given in Section 3.1.

43

Using the method of Lagrange multipliers (e.g., in [46]) we have the follow-

ing condition for extremum points along the boundary k(i) = ∂Harea

∂E(i) ,

∇
[

k(p(i), E(i))

∥
∥
∥
∥

∂Harea

∂p(i)

∥
∥
∥
∥
− k2(p(i), E(i))

∂Harea

∂E(i)

]

= λ∇
[

k(i) − ∂Harea

∂E(i)

]

,

∥
∥
∥
∥

∂Harea

∂p(i)

∥
∥
∥
∥
− 2k

∂Harea

∂E(i)
= λ ,

λ =

∥
∥
∥
∥

∂Harea

∂p(i)

∥
∥
∥
∥
− 2

(
∂Harea

∂E(i)

)2

.

1

2

34

(a) (b)

Figure 3.5: Motivation for modified gain. Agent number 4 in (a), has a small
arc component compared to its total boundary mass. In (b) we show a magnified
region about agent 4. In this magnified picture, the dotted lines are the energy
radii of the four respective agents, and the solid lines are the Voronoi faces. The
shaded region is not in the region of any agent.

With k(i)(p(i), E(i)) chosen as in (3.35), we have two possible flow cases:

ṗ(i) =

∂H
∂p(i)

2 ∂H
∂E(i)

, ṗ(i) =
∂H
∂E(i)

∂H
∂p(i)
∥
∥
∥
∂H
∂p(i)

∥
∥
∥

. (3.38)

The former quantity may pose some problems as ∂H
∂E(i) → 0. However, if this is

the case, then the choice of k(i)
∗
results in the latter flow case, which is bounded.

In fact, it can be shown that in the area coverage (5.4) and mixed coverage (3.12)

cases, the original optimal gain, (3.34) is upper bounded by 1
2
and 1, respectively.

44

3.4.2 Convergence analysis

We now replace the general objective, H, with the functions developed in

Section 3.3. The proof of the following theorem relies on the LaSalle invariance

principle; see [34].

We omit the results of using Hcent (3.18) for reasons stated in Remark 9.

Theorem 15 (Critical configurations and convergence, energy-aware MWVD).

The critical points of a gradient ascent flow characterized by (3.31) and appropriate

choice of k using an objective function Hea are configurations where each agent is

either:

1. located at the centroid, p(i) = C
(i)
mult,

2. has no energy, E(i) = 0.

Agents approach these critical configurations as t→∞.

Proof. From Lemma 13, dH
dt
≥ 0 using H = Hea. Thus we need to characterize the

critical points where dHea

dt
= 0. From (3.32), this is the case if for all i ∈ {1, . . . , N},

either:

1.

k(i) =
1

2

sat
(
∂Hea

∂p(i)

)

· ∂Hea

∂p(i)

∥
∥
∥sat

(
∂Hea

∂p(i)

)∥
∥
∥

2
∂Hea

∂E(i)

= 0 , (3.39)

2.

sat

(
∂Hea

∂p(i)

)

= sat

(

2M
(i)
mult

(E(i))2
(C

(i)
mult − p(i))T

)

= 0 , (3.40)

3. or
∂Hea

∂p(i)
− k(i) ∂Hea

∂E(i)
sat

(
∂Hea

∂p(i)

)

= 0 . (3.41)

Case (3.39) implies either ∂Hea

∂p(i)
= 0 or E(i) = 0. Case (3.40) also implies that

∂Hea

∂p(i)
= 0, which occurs if either M

(i)
mult = 0 or p(i) = C

(i)
mult. The case where

M
(i)
mult = 0 implies that the region V

(i)
mult ∩Q = ∅.

45

To analyze case (3.41), we consider a situation when
∥
∥
∥
∂Hea

∂p(i)

∥
∥
∥ ≤ 1 and when

∥
∥
∥
∂Hea

∂p(i)

∥
∥
∥ > 1. For the former case,

∂Hea

∂p(i)

[

1− 1

2 ∂Hea

∂E(i)

∂Hea

∂E(i)

]

= 0 ,

1

2

∂Hea

∂p(i)
= 0 .

This implies that ∂Hea

∂p(i)
= 0, a case addressed in (3.40). The latter case, when

∥
∥
∥
∂Hea

∂p(i)

∥
∥
∥ > 1 leads to:

∂Hea

∂p(i)



1−

∥
∥
∥
∂Hea

∂p(i)

∥
∥
∥

2 ∂Hea

∂E(i)

∂Hea

∂E(i)
∥
∥
∥
∂Hea

∂p(i)

∥
∥
∥



 = 0 ,

1

2

∂Hea

∂p(i)
= 0 .

This again implies that ∂Hea

∂p(i)
= 0, addressed earlier.

We now characterize the invariant configurations, when ṗ(i) = 0 for all

i ∈ {1, . . . , N}. This corresponds to the cases (3.39) and (3.40). The largest

invariant set contained in S = {(p1, . . . , pN) | Ḣea = 0} is S itself. By the LaSalle

invariance principle, system configurations will asymptotically approach S.

Theorem 16 (Critical configurations and convergence, energy-limited MWVD).

The critical points of a gradient ascent flow characterized by (3.31) and appropriate

choice of k using an objective function H ∈ {Harea,Hmix} are configurations where

each agent either satisfies ∂H
∂p(i)

= 0, or has no energy, E(i) = 0. The statement

∂H
∂p(i)

= 0 has the following meanings:

1. the vehicle cannot further locally increase its coverage area when using Harea,

2. the vehicle has reached the centroid of D
(i)
mult when using Hmix.

Agents approach these critical configurations as t→∞.

Proof. The results for each deployment objective function will follow from the

LaSalle invariance principle; see [34]. We will present the proof for the Area

46

coverage objective function (3.17) and note that the proofs for the remaining cases

are similar.

The region Q is positively invariant since agents cannot leave it. Also,

using k(i)
∗
from (3.34) into (3.32) results in Ḣarea ≥ 0 in Q. We now compute the

critical points where Ḣarea = 0. From (3.32), this occurs when either k(i)
∗
= 0, or

sat
(
∂Harea

∂p(i)

)

= 0, or when

(
∂Harea

∂p(i)
− k(i)∗∂Harea

∂E(i)
sat

(
∂Harea

∂p(i)

))

= 0 , (3.42)

for all i ∈ {1, . . . , N}.
If k(i)

∗
= 0, we divide the problem into the case where

∥
∥
∥
∂Harea

∂p(i)

∥
∥
∥ ≤ 1 or

where
∥
∥
∥
∂Harea

∂p(i)

∥
∥
∥ > 1. If the former is true, then

k(i)
∗
=

1

2∂Harea

∂E(i)

= 0 .

However, since ∂Harea

∂E(i) is bounded, this is not possible. If
∥
∥
∥
∂Harea

∂p(i)

∥
∥
∥ > 1,

k(i)
∗
=

∥
∥
∥
∂Harea

∂p(i)

∥
∥
∥

2∂Harea

∂E(i)

= 0 ,

and ∂Harea

∂p(i)
= 0. This implies that

∫

Arcs(D
(i)
mult)

φ(γ(i))[n̂T

out(γ
(i))]Tdγ(i) = 0 .

Assuming that φ > 0 on Q, the first equation implies that either Arcs(D
(i)
mult) = ∅

or that the integral over the boundary is balanced in all directions. The latter

equation also implies that Arcs(D
(i)
mult) = ∅. This occurs if either E(i) = 0, or D

(i)
mult

is composed entirely of Voronoi edges (the boundary of Q counts as a Voronoi

edge), or D
(i)
mult = ∅.

When sat
(
∂Harea

∂p(i)

)

= 0, then ∂Harea

∂p(i)
= 0, and we have addressed this situa-

tion.

Now suppose that (3.42) is true. We substitute (3.34) into (3.42) and con-

sider the case where
∥
∥
∥
∂Harea

∂p(i)

∥
∥
∥ ≤ 1 or where

∥
∥
∥
∂Harea

∂p(i)

∥
∥
∥ > 1. When the former is

47

true,

∂Harea

∂p(i)
− 1

2∂Harea

∂E(i)

∂Harea

∂E(i)

(
∂Harea

∂p(i)

)

= 0 ,

1

2

∂Harea

∂p(i)
= 0 ,

which implies ∂Harea

∂p(i)
= 0. Similarly

∥
∥
∥
∂Harea

∂p(i)

∥
∥
∥ > 1, implies ∂Harea

∂p(i)
= 0. For both

cases we conclude that ∂Harea

∂p(i)
= 0, a situation that we have addressed earlier.

We now characterize the set of invariant configurations. The system is

positively invariant if ṗ(i) = 0 for all i ∈ {1, . . . , N}. From (3.31), this occurs

when k(i)
∗
= 0 or sat

(
∂Harea

∂p(i)

)

= 0 for all i ∈ {1, . . . , N}. Therefore, the invariant

configurations are exactly these where Ḣarea = 0, which have been described. By

LaSalle’s invariance principle [34], the agents will asymptotically approach this set

of configurations.

We now state the PWVD analogues to the convergence theorems stated

previously.

Theorem 17 (Critical configurations and convergence, energy-aware PWVD).

The critical points of a gradient ascent flow characterized by (3.31) and appropriate

choice of k using an objective function Hea are configurations where each agent is

either:

1. located at the centroid, p(i) = C
(i)
pow,

2. has an empty region, V
(i)
pow ∩Q = ∅,

3. has no energy, E(i) = 0.

Agents approach these critical configurations as t → ∞. We refer to the proof of

Theorem 15 as it is similar. �

Theorem 18 (Critical configurations and convergence, energy-limited PWVD).

The critical points of a gradient ascent flow characterized by (3.31) and appropriate

choice of k using an objective function H ∈ {Harea,Hcent,Hmix} are configurations

where each agent either satisfies ∂H
∂p(i)

= 0, or its region D
(i)
pow = ∅. The statement

∂H
∂p(i)

= 0 has the following meanings:

48

1. the vehicle cannot further locally increase its coverage area when using Harea,

2. vehicle i is located at the centroid of D
(i)
pow when using Hcent, and

3. the vehicle has reached a balance between maximizing area covered and re-

maining close to the centroid of D
(i)
pow when using Hmix.

Agents approach these critical configurations as t → ∞. We refer to the proof of

Theorem 16 as it is similar. �

3.4.3 An algorithmic formulation for deployment

Here we outline the necessary functions that an individual agent must per-

form in order to distributively complete the deployment task. We make the fol-

lowing assumptions about the agents:

1. each agent i can communicate with other agents in the ball B(i)(2Emax),

where Emax = maxi{E(i)},

2. communication is done synchronously, and

3. each agent has knowledge of φ(q) for q ∈ Q.

Remark 19. Results from [84] and, more relevantly [16], address the issue of

asynchronous communication and convergence of gradient algorithms similar to

the one presented here. An extension of these results is possible for the algorithms

demonstrated in this manuscript. •

Each vehicle must be capable of performing computations regarding general

Voronoi regions and their limited-range versions. We denote by computeRegion()

the function that takes in neighbor positions and energies in N (i)
mult (resp. N

(i)
LD,mult)

and computes the regions V
(i)
mult (resp. D

(i)
mult). We then define computeGradient()

to be the function that takes the result of computeRegion() and returns the gra-

dient direction (3.31). Algorithm 2 outlines the deployment process.

49

Algorithm 2: Distributed deployment algorithm

Data: φ(q) for q ∈ Q
while true do // this repeats indefinitely

send((p(i), E(i)), N (i)
mult)

{p(j)}, {E(j)} ← listen()

myRegion← computeRegion({p(j)}, {E(j)})
ṗ(i), Ė(i) ← computeGradient(myRegion, φ)

end

3.5 Simulations

In this section, we present simulation results for the three coverage objec-

tives. First, however, we will address the motivation for choosing k(i)
∗
from (3.35)

over (3.34). In this simulation, n = 8 agents were initialized at random initial posi-

tions with E(i) = 10 for i ∈ {1, . . . , 8}. The agents remain in the invariant domain

Q = [0, 15]× [0, 15] ⊂ R2 with φ(x, y) = 1+10 exp[−1
9
((x−10)2+(y−10)2)]. The

agents maximized the area coverage objective function (5.4).

The use of k(i)
∗
from (3.35) demonstrates some advantages over (3.34) in

the simulation of Figure 3.6. In Figure 3.6(a), agent 4 finishes with almost no

energy, while the same agent has significantly more energy in Figure 3.6(b). In

addition, all 8 agents were deployed in Figure 3.6(a) while only 5 agents left the

starting location in Figure 3.6(b).

In this section, we present simulations for the MWVD-based deployment

algorithms. We also present and compare these simulations with the PWVD-

based deployment algorithms for completeness. We additionally demonstrate how

a carefully chosen objective function can result in other behavior, such as remaining

close to a starting point.

We would like to note the following general observations regarding deploy-

ment algorithms based on the PWVD versus the MWVD. When the task is to

maximize coverage quality as in (3.5) and (3.12), agents using the MWVD tend

to expend energy in a more balanced fashion. In other words, the final energy

values of each agent have lower variance at convergence under the MWVD-based

50

deployment than under the PWVD-based deployment. This phenomena is not ob-

served under area-maximizing coverage (5.4). Additional observations regarding

the PWVD are addressed in the following subsections.

Additionally, when maximizing coverage quality, agent final positions are

clustered around the parts of Q where φ has large value. This is not the case in

the area-maximizing case since the associated metric does not place any weight on

the importance of distance to points inside an agent’s coverage region.

3.5.1 Energy-aware coverage case

Here, n = 12 agents remain in the invariant domainQ = [0, 10]×[0, 10] ⊂ R2

with a density function φ composed of 4 Gaussian distributions (see Figure 3.7).

The density function used was

φ(q) = 1 + 10

[

e−
‖q−r1‖

2

9 + e−
‖q−r2‖

2

2 + e−
‖q−r3‖

2

2 + e−‖q−r4‖2
]

,

where r1 = (8, 8), r2 = (8, 2), r3 = (8, 4) and r4 = (3, 7). Agents started at

random positions in the lower-left corner, with E(i) = 5 for i ∈ {1, . . . , 12}. The

agents followed the gradient ascent control law in (3.31), and used (3.34). Energy

consumption profiles of the deployment process are shown in Figure 3.8.

Remark 20. Using the PWVD, it is possible for an agent i to be outside of

its region of dominance V
(i)
pow, i.e.: p(i) /∈ V

(i)
pow. It is oftentimes the case where

V
(i)
pow ∩Q = ∅ when p(i) is close to the boundary of Q, and E(i) < E(j) for j ∈ N (i)

pow

This phenomena can be observed in the simulation of Figure 3.7 (left). From an

energy perspective, the use of these sensors is wasted, since they are pushed away

and do not play any role in the coverage task. This raises the question of how

to characterize the number of sensors needed to cover a given region under the

PWVD-based algorithms. •

The undesirable behavior as mentioned in Remark 20 of the PWVD energy-

aware algorithm is avoided when using the MWVD based algorithm, since it is a

property of the MWVD that p(i) ∈ V (i)
mult. In this regard, the MWVD forces the

participation of all sensors in the coverage task. The use of the PWVD would

require an assessment of how many sensors are enough to solve the coverage task.

51

We ran 20 simulations each of the PWVD and MWVD energy-aware al-

gorithms. Histograms for objective function value at the end of each simulation

and energy spent by each agent are compared in Figures 3.9 and 3.10. Because

these are gradient algorithms, they converge to many local minima of the objective

function, as can be seen in Figure 3.10.

3.5.2 Area coverage case

We now examine the area coverage case, (5.4) between the PWVD and

MWVD partitions. The system of agents was initialized identically to the energy-

aware simulations, and we compare the performance between the PWVD-based

deployment and the MWVD-based deployment. Agent trajectories are shown in

Figure 5.26 and energy consumption profiles of the deployment process are shown

in Figure 3.12.

Here we do not see the undesirable effect in the PWVD case (Figure 5.26,

left) of agents lying along the boundary of Q without a region of dominance. This

is because the gradient, ∂Harea

∂p(i)
, depends only on the presence of energy arcs for each

vehicle. As agents move closer to the boundary ∂Q, the arcs tend to disappear since

the distance from p(i) to the boundary is less than E(i). This prevents agents from

getting squeezed into the boundary. Both algorithms perform similarly, deploying

to cover almost all of Q in both cases.

We then performed 50 simulations of both the MWVD and PWVD area

coverage algorithms, starting from random initial positions. Histograms of energy

consumption as well as objective function value at the end of each simulation are

compared in Figures 3.13 and 3.14.

3.5.3 Mixed coverage case

The third simulation presents the mixed coverage case (3.12) between the

PWVD and MWVD with identical initial conditions as before. The area and cen-

troidal components carried equal weight, κarea = κcent = 1 from (3.12). Agent

trajectories are shown in Figure 3.19 and energy consumption profiles of the de-

52

ployment process are shown in Figure 3.16.

We again notice the return of the same undesirable phenomena mentioned

in the energy-aware simulations for the energy-limited PWVD simulation in Fig-

ure 3.19, left. Despite this, the mixed coverage algorithm resulted in agent positions

that are more collocated with dense regions of φ for both the PWVD and MWVD

cases, as compared to Figure 5.26.

We performed 50 simulations from random initial positions and compare

the statistics in Figures 3.17 and 3.18. Note that while both deployment cases

maximize the function (3.12), the PWVD uses the metric (3.3) and the MWVD

uses the metric (3.4), which accounts for the different ranges in final cost values.

3.5.4 Base return coverage case

Here we explore a new objective function. Rather than repeating the gra-

dient analysis and convergence result, we only provide the cost function:

Hbase(P,E) = Harea(P,E)−
N∑

i=1

ρ(q0, p
(i), E(i)) , (3.43)

with ρ(q0, p
(i), E(i)) = − exp[‖q0 − p(i)‖2 − (E(i))2] and q0 = (0, 0). The effect of

the additional term ρ acts to heavily penalize agents if they venture too far from

the fixed point q0.

We now provide a simulation using both the PWVD and MWVD partitions.

Agents remain in Q = [−5, 5]× [−5, 5] ⊂ R2 and φ(x, y) = 1. We initialized n = 8

agents randomly around the origin with E(i) = 3 for all i ∈ {1, . . . , 8}.
The simulations have almost identical results, with the exception of different

partitioning schemes. The agents manage to stay close enough to the origin when

fully deployed. As expected, agents maximized coverage in the beginning. However

as energy levels decreased and distance from the origin increased, the penalty term

of the gradient dominates.

53

1

2

3

4 56

7

8

E
(4

)
,
(J

)
t, (s)

10

1400

(a)

1

2

3

4

5

67

8

E
(4

)
,
(J

)

t, (s)

10

800

(b)

Figure 3.6: Comparison between the performance of k(i)
∗
from (3.34), (a); and

from (3.35), (b). Agent paths and final configurations are shown at left, and the
energy level of agent 4 is plotted at right. Shaded regions indicate a high value of
φ.

54

1

2
3

4
5

6

7

8

9

1011 12

1

2
3

4

5
6

7

8

9

10 11

12

Figure 3.7: Energy-aware coverage simulation results. Shaded regions indicate a
high value of φ. The path lines and final configurations are shown for energy-aware
PWVD, left, and energy-aware MWVD coverage, right.

E
(i
)
,
(J

)

t, (s)

5

1500

E
(i
)
,
(J

)

t, (s)

5

1500

Figure 3.8: Energy-aware coverage energy consumption results. Energy profiles
for the energy-aware PWVD simulation are at left, and MWVD coverage at right.

0 0 1 2 3 4 5

10

20

30

40

50

Energy consumed

#
A
g
en

ts

0 0 1 2 3 4 5

20

40

60

80

100

120

Energy consumed

#
A
g
en

ts

Figure 3.9: Energy consumption histograms for energy-aware coverage using the
PWVD (left) and the MWVD (right).

55

1

2

3

4

5

5800 6000 6200 6400 6600

Hea (PWVD)

#
S
im

u
la
ti
o
n
s

1

2

3

4

5

−130 −120 −110 −100

Hea (MWVD)

#
S
im

u
la
ti
o
n
s

Figure 3.10: Objective function values at the end of the simulations for the
energy-aware coverage using the PWVD (left) and the MWVD (right). Note that
the PWVD objective function is from (3.5) using the metric (3.3) while the MWVD
uses the metric (3.4).

1

2

3

4

5

6

7

8

9

10 11

12

1

2

3
4

5

6

7

8

9

10 11

12

Figure 3.11: Area coverage simulation results. The path lines and final configu-
rations are shown for limited-range PWVD area coverage, left, and limited-range
MWVD area coverage, right.

E
(i
)
,
(J

)

t, (s)

5

1500

E
(i
)
,
(J

)

t, (s)

5

1500

Figure 3.12: Area coverage simulation energy consumption results. Energy pro-
files for the area PWVD simulation are at left, and area MWVD coverage at right.

56

0 0 1 2 3 4 5

50

100

150

Energy consumed

#
A
g
en

ts

0 0 1 2 3 4 5

50

100

150

Energy consumed

#
A
g
en

ts

Figure 3.13: Energy consumption histograms for area coverage using the PWVD
(left) and the MWVD (right).

10

20

30

40

442 443 444 445 446

Ha (PWVD)

#
S
im

u
la
ti
o
n
s

10

20

30

40

442 443 444 445 446

Ha (MWVD)

#
S
im

u
la
ti
o
n
s

Figure 3.14: Objective function values at the end of the simulations for area
coverage using the PWVD (left) and the MWVD (right).

1

2

3

4

5
6

7

8

9

10
11

12

1

2

3

4

5
6

7

8

9

10
11
12

Figure 3.15: Mixed coverage simulation results. The path lines and final configu-
rations are shown for limited-range PWVD mixed coverage, left, and limited-range
MWVD mixed coverage, right.

57

E
(i
)
,
(J

)

t, (s)

5

1500

E
(i
)
,
(J

)

t, (s)

5

1500

Figure 3.16: Mixed coverage simulation energy consumption results. Energy pro-
files for the mixed PWVD simulation are at left, and the mixed MWVD coverage
at right.

0 0 1 2 3 4 5

20

40

60

80

100

120

140

Energy consumed

#
A
g
en

ts

0 0 1 2 3 4 5

50

100

150

150

150

Energy consumed

#
A
g
en

ts

Figure 3.17: Energy consumption histograms for mixed coverage using the
PWVD (left) and the MWVD (right).

4

8

12

6400 6600 6800 7000

Hm (PWVD)

#
S
im

u
la
ti
o
n
s

4

8

12

16

20

442 443 444 445

Hm (MWVD)

#
S
im

u
la
ti
o
n
s

Figure 3.18: Objective function values at the end of the simulations for the mixed
coverage using the PWVD (left) and the MWVD (right). Note that the PWVD
objective function uses the metric (3.3) while the MWVD objective function uses
the metric (3.4).

58

1 2

34

5 6

78

1 2

34

5 6

78

Figure 3.19: Base-return coverage simulation results. The path lines and final
configurations are shown for limited-range PWVD case, left, and limited-range
MWVD case, right.

Chapter 4

Unicycle Coverage via Hybrid

Systems Analysis

Although each agent in a network may be controllable and the interaction

among them can even be fixed, the consideration of nontrivial vehicle dynam-

ics needs special treatment to avoid destabilizing effects. This has motivated a

large number of papers on coordination algorithms for multi-agent systems with

fixed interaction topologies; see e.g., [17, 90, 40, 21] on formation stabilization and

synchronization. In particular, the stability analysis of these algorithms can be ap-

proached via Lyapunov methods and the classical LaSalle invariance principle as

from [34]. However, when the inter-vehicle interaction topology is not fixed, even

the consideration of first-order integrator dynamics may require hybrid-systems or

switched-systems techniques.

Using multiple Lyapunov functions has been a predominant method for

proving stability of a hybrid system, see [6, 42] and references therein. For multi-

agent systems, previous work ([16, 15]) relied on LaSalle’s invariance principle

instead. The work [44] provides an extension of LaSalle’s invariance principle to

hybrid systems, while [54] makes use of set-valued Lyapunov theory to analyze

the stability of multi-agent systems. More recently, [72, 25] revisits the notion of

hybrid (time) trajectories and develops an invariance principle based on graphical

convergence of set-valued maps. We choose the latter framework to analyze our

system.

59

60

This chapter contributes to previous work on nonholonomic vehicle net-

works by applying Locational Optimization techniques from e.g. [16, 63] while

assuming nonholonomic vehicle dynamics. References involving such dynamics in-

clude collision avoidance [61], cyclic pursuit [47, 12], and path-planning for Dubins

vehicles [73]. In [16], convergence of a coverage control problem using unicycle-type

dynamics was analyzed so that vehicles converged to a fixed target point as in [1],

which was updated at discrete-time intervals. We lift this simplification, allowing

target points (Voronoi centroids) to vary continuously with time.

The chapter is organized as follows. In Section 4.1, we introduce the two

nonholonomic vehicle dynamics that we consider. We then apply the hybrid sys-

tems results found in Chapter 2 to each system of wheeled vehicles in Sections 4.2

and 4.3. Within those sections, we verify that the network of vehicles falls within

the framework described in Chapter 2. We then prove convergence to centroidal

configurations for each case of vehicle dynamics. We also provide simulations of

this hybrid system and show that the algorithms perform as intended.

4.1 Problem setup and notation

We again perform coverage in the closed and convex region Q as from

before, however, we additionally require that the boundary ∂Q be smooth such

that the inwards pointing normal vector n̂in is well defined. We wish to perform

the same minimization of the function (4.11) while incorporating various types

of nonholonomic dynamics. That is, given a set of N agents with nonholonomic

dynamics, deploy throughout Q and arrive at centroidal Voronoi configurations.

4.1.1 Nonholonomic vehicle dynamics

The use of omni-directional vehicles in [16] allows the minimization of (4.11)

via a Lloyd-like gradient descent control law. This control law forces individual

agents to move directly towards the centroid of their Voronoi regions and is dis-

tributed in the sense of the Delaunay graph. We wish to develop control algorithms

that propel nonholonomic vehicles to these centroidal Voronoi configurations. We

61

utilize a hybrid systems approach and we refer the reader to the hybrid systems

framework developed in [72, 25] and presented in Chapter 2 for the analysis tools

employed in this work.

Referencing Figure 4.1, each vehicle has configuration variables (p(i), θ(i)) ∈
SEQ(2), and a body coordinate frame with basis e

(i)
1 = (cos θ(i), sin θ(i)) and e

(i)
2 =

(− sin θ(i), cos θ(i)). We denote d(i) = C(i)−p(i) as in Figure 4.1 and define the angle

Ω(i) ∈ [−π, π] to be the angle between e
(i)
1 and d(i). We assume the vehicles have

bounded velocity and turning rate, |v(i)| ≤ vmax and |ω(i)| ≤ ωmax respectively.

Next, we introduce two types of nonholonomic vehicles that we shall consider.

e
(i)
1

e
(i)
2

Ω(i)

C(i)

d(i)

θ(i)

p(i)

e
(i)
1

e
(i)
2

1
ωmax

d(i)

θ(i)

Ω(i)
C(i)

p(i)

e
(i)
1

e
(i)
21

ωmax

d̃(i)

θ(i)
Ω̃(i)

C(i)

p̃(i)

Figure 4.1: Vehicle with wheeled mobile dynamics (left). The variables are re-
defined for a vehicle with fixed forward velocity currently and a left virtual center
(middle). The non-active virtual center quantities are shown with a tilde, ˜ (right).

Variable forward velocity

The first vehicle we consider has control over both forward speed and turn-

ing rate. Such a kinematic model is common for many mobile robot applications.

It can perform one of three maneuvers: (i) move forward and steer, (ii) rotate in

place, or (iii) be at a full stop. An additional discrete variable, l ∈ {1, 2, 3}, will be
used to describe which of the three modes (forward, rotation, and rest) a vehicle is

in. Each agent can then be described by a state variable, x(i) ∈ SEQ(2)×{1, 2, 3}.
The multi-agent system state is denoted by x = (x(1), . . . , x(N)) ∈ R4N . In forward

62

motion, each vehicle flows according to

ṗ
(i)
1 = v(i) cos θ(i) ,

ṗ
(i)
2 = v(i) sin θ(i) ,

θ̇(i) = ω(i) ,

(4.1)

where (ω(i), v(i)) are the control inputs. Note that the definition of (θ(i), v(i)) is

unique up to the discrete action (θ(i), v(i)) 7→ (θ(i) + π,−v(i)). A possibility is to

use this symmetry to require e
(i)
1 ·d(i) ≥ 0 for all i ∈ {1, . . . , N}. Should the equality

be violated at some time t = t0, i.e., the centroid is behind the vehicle, then we

could redefine θ(i)(t+) = θ(i)(t0) + π. The vehicle would instantaneously reverse

directions leading to a fast adjustment. However, to provide a technical proof of

correctness, we modify these proposed dynamics in many cases by a rotation in

place.

A rotation in place introduces the new set of dynamics:

ṗ(i) = 0 ,

θ̇(i) = ω(i) ,
(4.2)

where ω(i) is the only control input.

In order to stabilize the vehicle to the target C(i), we will employ a discon-

tinuous stabilizing law similar to that of [1]. This law relies on the angle Ω(i) to

both stabilize the position and orientation of the unicycle; see Figure 4.1. However,

as the vehicle approaches C(i), the angle Ω(i) will become ill-defined. To avoid this

problem, we will make vehicles switch their dynamics to rest when they are within

an ǫ-neighborhood of their targets. That is, the dynamics will be:

ṗ(i) = 0 ,

θ̇(i) = 0 .
(4.3)

Vehicles with fixed forward velocity

The second vehicle we consider has a fixed forward velocity, v(i) = 1 for all

i ∈ {1, . . . , N}. Path planning for UAVs, underwater gliders, and other vehicles

that must maintain a minimum forward velocity motivate this model. For path

63

planning purposes, a simplified UAV model as in [20] assumes constant velocity,

constant altitude, and a minimum turning radius like the model we present here.

We also define the vehicle virtual center as its center of rotation when the turning

input is ±ωmax. These centers can be on either side of the vehicle, and we will

introduce a strategy to switch virtual center locations, if desired.

The objective is to steer the virtual center of each vehicle to a desired

centroid target. This target will be the centroid of the vehicle’s Voronoi region

calculated using the virtual centers of all vehicles in the network. Once the virtual

center has arrived at the centroid, the vehicle will hover about the centroid by

maintaining the maximum steering input ±ωmax. We construct the dynamics of

the virtual center by first assuming dynamics of the form

ṗ(i) =
(

cos θ(i), sin θ(i)
)T

, θ̇(i) = ωi ,

where ωi is the only input. Then the virtual center is located in the local frame at
(

0 , ± 1
ωmax

)
T

. We then transform this into the global frame and obtain

p(i)
′
= p(i) ± 1

ωmax

(

− sin θ(i), cos θ(i)
)
T

. (4.4)

The time derivative is

ṗ(i)
′
= ṗ(i) ± 1

ωmax

(

−(cos θ(i))θ̇(i), −(sin θ(i))θ̇(i)
)T

=

(

1∓ ω(i)

ωmax

)(

cos θ(i), sin θ(i)
)T

. (4.5)

Indeed, with ω(i) = ±ωmax, the vehicle is hovering since the virtual center remains

fixed, ṗ(i)
′
= 0.

The virtual center may be located on either side of a vehicle’s direction of

travel. Also, each vehicle can either be in forward motion or hovering motion.

This results in four possible modes of operation for each vehicle: forward-left,

hover-left, forward-right, and hover-right. We enumerate each mode with the state

l(i) ∈ {1, 2, 3, 4}.

64

4.2 Vehicles with variable forward velocity

We now address the case of a vehicle that can actuate its forward speed as

well as turning rate.

4.2.1 Hybrid modeling

Here we formally define the first hybrid system sketched in Section 4.1.1,

so that it satisfies the Basic Conditions in [72] in order to apply the invariance

principle found therein. We will take the state-space of the entire system to be O =

R4N , so that x ∈ (SEQ(2)×{1, 2, 3})N ⊂ O describes the position and orientation

of all agents. We now define the hybrid system that models the nonholonomic

vehicles, S = (F,G,A,B). In Section 4.1.1, we described three different types of

dynamics. Here we specify the relatively-closed set A ⊆ O, where continuous-time

evolution occurs.

To begin, we examine the configurations when a particular agent can flow,

A(i) = A
(i)
1 ∪A(i)

2 ∪A(i)
3 :

1. an individual agent can be in A
(i)
1 if the centroid is in front of the agent, and

if the centroid is too far from the agent,

2. an agent can be in A
(i)
2 if the centroid is too far from the agent, and either

(i) the centroid is behind the agent or (ii) the agent is on the boundary ∂Q

and pointing outwards, or

3. an agent can be in A
(i)
3 if the centroid is sufficiently close to the agent.

We present the precise set definitions with 0 < ǫ < ǫ < ǫ and ǫ is arbitrarily small,

respectively:

A
(i)
1 = {x ∈ O | x(i) ∈ SEQ(2)× {1}, e(i)1 · d(i) ≥ ǫ, ‖d(i)‖ ≥ ǫ} ,

A
(i)
2 = {x ∈ O | x(i) ∈ SEQ(2)× {2}, ‖d(i)‖ ≥ ǫ, e

(i)
1 · d(i) ≤ ǫ}

∪ {x ∈ O | x(i) ∈ SE∂Q(2)× {2}, ‖d(i)‖ ≥ ǫ, e
(i)
1 · n̂in ≤ 0} ,

A
(i)
3 = {x ∈ O | x(i) ∈ SEQ(2)× {3}, ‖d(i)‖ ≤ ǫ} .

65

Extending this to apply for all agents, we have

A =

N⋂

i=1

A(i) . (4.6)

Since each A
(i)
k ⊂ A(i) is relatively closed in O, A is also relatively closed in O,

satisfying one of the Basic Conditions 1.

In forward motion, we propose a turning control gain kθ(i) <∞ proportional

to the angular separation between the orientation of the vehicle and the target,

Ω(i). Additionally, we will have a control gain kp(i) <∞ that is proportional to the

distance to the target. In rotation, we consider a constant turning rate of ±ωmax.

We propose the following for each i ∈ {1, . . . , N}:

F
(i)
1 (x) =

(

ṗ
(i)
1 , ṗ

(i)
2 , θ̇

(i), l̇(i)
)T

=
(
kp(i) cos θ

(i), kp(i) sin θ
(i), kθ(i)Ω

(i), 0
)T

,

F
(i)
2 (x) =

(
0, 0, ωmax sgn(Ω

(i)), 0
)T

,

F
(i)
3 (x) = 0 .

The control gains kp(i) and kθ(i) will be chosen such that 0 ≤ kp(i) ≤ vm and

0 ≤ kθ(i) ≤ 2ωmax

π
. From here, we can define the flow map F : O ⇉ O. When

x /∈ A, F (x) = ∅, and when x ∈ A,

F (x) = (F1(x), . . . , FN(x))
T,

Fi(x) = F k
i (x) ⇐⇒ l(i) = k ∈ {1, 2, 3} .F (x) =







F1(x)
...

Fn(x)






,

Fi(x) =







F
(i)
1 (x) if l(i) = 1 ,

F
(i)
2 (x) if l(i) = 2 ,

F
(i)
3 (x) if l(i) = 3 .

(4.7)

We now define the sets of configurations, B(i), i ∈ {1, . . . , N}, where tran-

sitions from flowing to jumping may occur for an agent. An agent can jump if any

of the following occur:

1. the Voronoi centroid is behind an agent,

66

2. the centroid is almost perpendicular to the direction of travel or when the

agent is on the boundary,

3. the centroid transitions to be in front of an agent while the agent is in the

rotation mode,

4. the centroid passes sufficiently close to an agent while it is performing either

forward motion or rotation in place,

5. the centroid moves too far away from an agent while it is resting.

The precise set definitions for the above scenarios are, respectively:

B
(i)
1 = {x ∈ O | x(i) ∈ SEQ(2)× {1}, e(i)1 · d(i) ≤ −ǫ} ,

B
(i)
2 = {x ∈ O | x(i) ∈ SE∂Q(2)× {1}, e(i)1 · n̂in ≤ −ǫ}

∪ {x ∈ O | x(i) ∈ SEQ(2)× {1},−ǫ ≤ e
(i)
1 · d(i) ≤ ǫ} ,

B
(i)
3 = {x ∈ O | x(i) ∈ SEQ(2)× {2}, e(i)1 · d(i) ≥ ǫ, e

(i)
1 · n̂in ≥ 0} ,

B
(i)
4 = {x ∈ O | x(i) ∈ SEQ(2)× {1, 2}, ‖d(i)‖ ≤ ǫ} ,

B
(i)
5 = {x ∈ O | x(i) ∈ SEQ(2)× {3}, ‖d(i)‖ ≥ ǫ} .

Then B(i) =
⋃5
k=1B

(i)
k and

B =

N⋃

i=1

B(i) . (4.8)

It is not difficult to see that each B
(i)
k is relatively closed in O, and so B

is also relatively closed in O, satisfying another Basic Condition 1. The functions

describing where x might jump to are, respectively:

g
(i)
1 (x) = (p(i), θ(i) + π, 1) ,

g
(i)
2 (x) = (p(i), θ(i), 2) ,

g
(i)
3 (x) = (p(i), θ(i), 1) ,

g
(i)
4 (x) = (p(i), θ(i), 3) ,

g
(i)
5 (x) = (p(i), θ(i), 1) .

67

For each vehicle, we define G(i)(x) = {(x(1), . . . , g(i)k (x), . . . , x(N)) | x ∈ B(i)
k , ∀ k ∈

{1, . . . , 5}}. The overall jump map G : O ⇉ O is

G(x) =







∅, x /∈ B ,
⋃N
i=1G

(i)(x), otherwise .
(4.9)

Forward

l̇(i) = 0

θ̇(i) = kθ(i)Ω(i)

ṗ
(i)
1 = kp(i) cos θ(i)

ṗ
(i)
2 = kp(i) sin θ(i)

Rotate

l̇(i) = 0

θ̇(i) = kθ(i) sgn(Ω(i))

ṗ
(i)
1 = 0

ṗ
(i)
2 = 0

Stop

l̇(i) = 0

θ̇(i) = 0

ṗ
(i)
1 = 0

ṗ
(i)
2 = 0

e
(i)
1 · d(i) ≤ −ǫ θ(i) → θ(i) + π

‖d(i)‖ ≤ ǫ

l(i) → 3

‖d(i)‖ ≥ ǫ

l(i) → 1

or e
(i)
1 · d(i) ∈ [−ǫ, ǫ]

p(i) ∈ ∂Q, e
(i)
1 · n̂in ≤ 0

l(i) → 2

e
(i)
1 · d(i) ≥ ǫ

e
(i)
1 · n̂in ≥ 0

l(i) → 1

‖d(i)‖ ≤ ǫ l(i) → 3

Figure 4.2: State transition diagram for each vehicle in the network.

Remark 21. The jump map G takes the state x(t, j) ∈ B(i)
k to another set, x(t, j+

1) ∈ A ∪B. The following are all the possibilities:

1. if k = 1 then G(x) ∈ A(i)
1 ∪B(i)

2 ∪ B(i)
4 ,

2. if k = 2 then G(x) ∈ A(i)
2 ∪B(i)

4 ,

3. if k = 3 then G(x) ∈ A(i)
1 ∪B(i)

4 ,

4. if k = 4 then G(x) ∈ A(i)
3 , and

68

5. if k = 5 then G(x) ∈ A(i)
1 ∪ B

(i)
1 ∪ B(i)

2 .

The state may also be in more than one jump set, such as x ∈ B(i)
2 ∪ B(i)

4 . Then,

a jump can occur using g
(i)
2 (x) or g

(i)
4 (x), making this process non-deterministic. •

Remark 22. If we only implemented direction flipping, there exists a trajectory

such that when e
(i)
1 · d(i) = 0, the hybrid time domain (t, j) grows unbounded in

j for fixed t. This occurs since after flipping directions, a vehicle is still in the

switching set defined when e
(i)
1 · d(i) = 0. Thus, it is possible for that vehicle to

switch directions infinitely often in finite time. We include ǫ, ǫ, ǫ, and the careful

definition of A and B to prevent this and other similar situations. Other choices

of the A, B sets are possible. •

Proposition 23. The hybrid system for variable forward velocity vehicles defined

above in (4.6)–(4.9) satisfies the Basic Conditions of [25], Section-VI.

Proof. By construction, O is an open set, so Basic Condition (i) is true. In addition,

each A
(i)
k , k = {1, 2, 3}, is closed since Q is a closed set, and the inequalities are

continuous and closed. A is then relatively closed in O since A(i) is the union of

three closed sets, and A is the intersection of all A(i) for i ∈ {1, . . . , N}. For similar

reasons, the set B(i) for each i ∈ {1, . . . , N} is closed and this implies that B is

relatively closed since it is a finite union of B(i), for i ∈ {1, . . . , N}. Thus, Basic

Condition (ii) is true.

We now check Basic Condition (iii). The flow map F can map to a single

point or to the empty set, both of which are convex. In addition, F is locally

bounded because F
(i)
1 , F

(i)
2 , F

(i)
3 , i ∈ {1, . . . , N}, are bounded over R4N given that

kθ(i) and kp(i) are bounded.

Outer semicontinuity of F part 1, x ∈ A

It is important to note that each A(i), i ∈ {1, . . . , N} is the disjoint union,

A
(i)
1 ∪A(i)

2 ∪A(i)
3 . Suppose x ∈ A(i)

1 for all i ∈ {1, . . . , N}, the other cases where x is

in one of A
(i)
2 , A

(i)
3 are analogous. Consider now the convergent sequences xm → x

and yi,m → yi with yi,m = F
(i)
1 (xm) for all i.

69

(1) Suppose there exists anM such that xm ∈ A(i)
1 for all m ≥M . By continuity

of F
(i)
1 , F

(i)
1 (xm) converges to F

(i)
1 (x). By unicity of limits, we have that

yi = F
(i)
1 (x) for all i.

(2) Suppose that for all M ≥ 0 there exists mk ≥M such that xmk /∈ A
(i)
1 . Note

that {xmk} ⊆ {xm}. This implies that xmk ∈ A
(i)
2 ∪A(i)

3 ∪ (O \ A(i)). We can

assume that xmk are all in one of these sets without loss of generality.

(a) Let xmk ∈ A(i)
2 for all k. Since A

(i)
2 is closed, the limit of xmk is in A

(i)
2 .

This implies x ∈ A(i)
2 , a contradiction.

(b) Let xmk ∈ A
(i)
3 for all k. We will reach a similar contradiction.

(c) Let xmk ∈ (O \ A) for all k. Then ymk = F (xmk) = ∅ for all k. Since

the empty set is closed, ymk → y ∈ ∅. Note that ∅ ⊂ F (x(i)) and the

result follows.

Outer semicontinuity of F part 2, x /∈ A

If x /∈ A, then F (x) = ∅. Suppose also that there exists convergent se-

quences xm → x and ym → y such that ym = F (xm) for all m.

1. Assume that xm /∈ A for all m ≥ M . Then F (xm) = ∅ and ym = ∅ for all

m ≥M . Since ∅ is closed, ym → y ∈ ∅.

2. Suppose there exists an infinite subsequence {xmk} ⊆ {xm} with xmk ∈ A

for all k. Since A is closed, xmk → x ∈ A, a contradiction.

Finally, we prove Basic Condition (iv). The map G is strictly set-valued

since a particular x(i) can jump to multiple configurations, see (4.9). To prove

local boundedness, consider an x ∈ B. We have to find a neighborhood N ⊂ O of

x such that
⋃

x̄∈N G(x̄) is bounded. Observe that,

⋃

x̄∈N

G(x̄) =
⋃

i,x̄∈N

G(i)(x̄)

=
N⋃

i=1

{(x(1), . . . , g(i)k (x̄), . . . , xn) | x̄ ∈ N ∩B(i)
k } .

70

Each g
(i)
k (x) is clearly locally bounded, so then we can find a N0 ⊂ O of x such

that
⋃

x̄∈N0
G(x̄) is a bounded set. Therefore, G is locally bounded. We now prove

outer semicontinuity of G. Suppose there exist two convergent sequences xm → x

and ym → y such that ym ∈ G(xm). We must prove that y ∈ G(x).

Outer semicontinuity of G part 1

Suppose that for all K ≥ 0 there exists mk ≥ K such that xmk /∈ B. Then

G(xmk) = ∅ and ymk ∈ ∅. Since the empty set is closed, ymk → y ∈ ∅, and it is

true that ∅ ⊆ G(x), for any x ∈ O.

Outer semicontinuity of G, part 2

Suppose that for all K ≥ 0 there exists mk ≥ K such that xmk ∈ B. Since

B is closed, this implies xmk → x ∈ B. If xmk ∈ B, this implies there exist fixed

i0 and k0 such that xmk ∈ Bk0
i0

for an infinite number of mk. Without loss of

generality denote {xmk} as {xm}. Since each B
(i)
k are closed, then xm ∈ Bk0

i0
and

xm → x ∈ Bk0
i0
. Now, ym = (x(1), . . . , gk0i0 (xm), . . . , xn) ∈ G(xm). Since gk0i0 (xm) is

continuous, gk0i0 (xm)→ gk0i0 (x). By unicity of limits, ym → y ∈ G(x).

4.2.2 Asymptotic convergence

With Proposition 23, we can apply the hybrid LaSalle invariance principle

in [72]:

Theorem 24. Let U = O. Given the hybrid system for vehicles with variable

forward velocities above, any precompact trajectory x(t, j), with rgex ∈ U , will

approach the set of points

M =

{

x ∈ O | x ∈
N⋂

i=1

A
(i)
3 ,

}

. (4.10)

Proof. We will analyze the evolution of the cost (4.11). It can be shown that (4.11)

is locally Lipschitz on O [16], for all x in A, uA(x) = LFH. We now compute the

71

derivative (see [16]).

LFH =

N∑

i=1

[
∂H
∂p(i)

ṗ(i) +
∂H
∂θ(i)

θ̇(i) +
∂H
∂l(i)

l̇(i)
]

=

N∑

i=1

∂H
∂p(i)

ṗ(i)

=
N∑

i=1

2M (i)(p(i) − C(i))Tṗ(i) .

When an agent is in a rotating or rest mode, x(i) ∈ A(i)
2 ∪A(i)

3 and ṗ(i) = 0. When

x(i) ∈ A(i)
1 , we have

∂H
∂p(i)

ṗ(i) = 2M (i)(p(i) − C(i))T

(

kp(i) cos θ
(i)

kp(i) sin θ
(i)

)

= 2kp(i)M
(i)(p(i) − C(i)) · e(i)1 .

Recall from the A
(i)
1 definition that e

(i)
1 · (C(i) − p(i)) ≥ ǫ, then ∂H

∂p(i)
ṗ(i) < 0. Thus,

uA(x) ≤ 0, ∀ x ∈ A.
Since G is set-valued, uB(x) = maxx+∈G(x){H(x+)−H(x)}. The cost func-

tion (4.11) does not have any dependence on l(i) or θ(i). In addition, the jump

map (4.9) does not create discontinuities in position. Thus, H does not change in

value over jumps, and uB(x) = 0, ∀ x ∈ B.

The conditions of the hybrid LaSalle invariance principle are satisfied. Thus,

the precompact trajectories x will approach the largest weakly invariant set in

L = H−1(r) ∩ U ∩
(

u−1
A (0) ∪ u−1

B (0)
)

= H−1(r) ∩
(

u−1
A (0) ∪ B

)

,

for some r ∈ H(U). Note that H−1(r) represents some level set of the cost func-

tion (4.11). Now we must identify the largest weakly invariant set,M in L. Since

our system is autonomous, the largest weakly forward invariant set is also the

largest weakly invariant set.

We now check for weakly invariant trajectories. We do this by assuming

that one vehicle is in a switching state, and show that it must switch to a flowing

state, and remain there for a non-zero amount of time. Then we show that the

only flowing state which remains in a level set for all time is the stationary state,

x ∈ A(i)
3 for all i ∈ {1, . . . , N}.
Suppose there exists a trajectory x̃(t, j) with H(x̃) = r for all (t, j) ∈

R≥0 × N such that x̃(t0, j0) ∈ B. This implies that there exists i∗ and k∗ such

72

that x̃(t0, j0) ∈ B(i∗)
k∗ . Referencing Remark 21, all jumps eventually terminate with

x̃(t0, j) ∈ A(i) = A
(i)
1 ∪A(i)

2 ∪A(i)
3 for some j > j0. Furthermore, this configuration

x̃(t0, j) remains in A(i) for a nontrivial amount of time. We have shown that all

configurations x ∈ B return to flowing states. Now we examine the case where

x̃(t, j) ∈ A to arrive at the final result.

Suppose there exists a trajectory x̃(t, j) with H(x̃) = r for all (t, j) ∈
R≥0×N and x̃(t0, j0) ∈ A for some t0 + j0 ≥ 0. Since ∂H

∂p(i)
ṗ(i) < 0 for any x ∈ A(i)

1 ,

this implies that x̃(t0, j0) ∈ A(i)
2 ∪ A(i)

3 for all i ∈ {1, . . . , N}. If this is true, then

ṗ(i) = 0 for all i ∈ {1, . . . , N}. Suppose there exists an i∗ such that x̃(t0, j0) ∈ A(i∗)
2 .

Because ṗ(i) = 0, C(i) is constant for all i ∈ {1, . . . , N}, and under the flow F
(i)
2 ,

|Ω(i∗)| decreases. Then, for some t1, such that t0 ≤ t1 <∞, x̃(t1, j0) ∈ B(i∗)
3 where

a jumped is forced so that x̃(t1, j0 + 1) ∈ agentAi∗1. This implies that uA(x̃) < 0,

and the trajectory x̃(t, j) leaves the level set H−1(r).

Therefore, in order to remain in the level set H−1(r), trajectories x(t, j)

must satisfy x ∈ A(i)
3 for all i ∈ {1, . . . , N}. This also satisfies x ∈ u−1

A (0).

4.3 Vehicles with fixed forward velocity

We now address the case of a vehicle that can only actuate its turning rate.

4.3.1 Virtual center switching

Taking the Locational Optimization cost function

H(P,W) =
N∑

i=1

∫

W (i)

‖q − p(i)‖2φ(q)dq , (4.11)

where P = (p(1), . . . , p(N)) is the tuple of vehicle locations, and W = (W (1), . . . ,

W (N)) is any partition of Q formed from P . Let V be the Voronoi partition formed

from P . It has been shown that for any partition W,

H(C,W) ≤ H(P,W) , (4.12)

H(P,V) ≤ H(P,W) , (4.13)

73

where C = (C(1), . . . , C(N)) is the tuple containing the centroids of each regionW,

see [15].

Lemma 25. Let P = (p(1), . . . , p(i), . . . , p(N)), and let P̃ = (p(1), . . . , p̃(i), . . . , p(N))

where p̃(i) is closer to the centroid C(i), ‖p̃(i) − C(i)‖ ≤ ‖p(i) − C(i)‖. Let V(P) be
the Voronoi partition of Q associated with P . Then,

H(P̃ ,V(P)) ≤ H(P,V(P)) , (4.14)

and

∆H , H(P̃ ,V(P))−H(P,V(P)) =M (i)(‖p̃(i)−C(i)‖2−‖p(i)−C(i)‖2) ≤ 0 . (4.15)

Additionally, H(P̃ ,V(P̃))−H(P,V(P)) ≤ ∆H.

Proof. At first, we have

H(P,W) =

N∑

i=1

∫

W (i)

‖q − p(i)‖2φ(q)dq .

Note that the above expression is the sum of the moment of inertias of each region

about the positions p(i) of the vehicles. Recalling the Parallel Axis Theorem, the

moment of inertia of an object about any axis of rotation parallel to an axis passing

through the center of mass can be written as

I = ICM +MR2 ,

where ICM is the moment of inertia about the axis through the center of mass, M

is the mass of the object, and R is the perpendicular distance between the new

axis and the axis trough the center of mass. Therefore, we can rewrite the cost

function as

H(P,W) =

N∑

i=1

I(i) =

N∑

i=1

I
(i)
CM +M (i)‖p(i) − C(i)‖2 .

and then,

H(P̃ ,W) = H(P,W)−M (i)(‖p(i) − C(i)‖2 − ‖p̃(i) − C(i)‖2) .

74

Replacing the arbitrary partition W with V(P) and noting that ‖p̃(i) − C(i)‖ ≤
‖p(i) − C(i)‖ gives the result (4.15).

However, using the relations (4.12), (4.13), we can conclude that

H(P̃ ,V(P̃)) ≤ H(P̃ ,V(P)) ≤ H(P,V(P)) , (4.16)

and so the difference H(P̃ ,V(P̃)−H(P,V(P)) is upper bounded by (4.15).

We propose that each vehicle can switch the position of its virtual center

only if the improvement given by Lemma 25 is better than some threshold β, which

implies that the actual improvement in cost is H(P,V(P))−H(P̃ ,V(P̃)) ≥ β.

4.3.2 Hybrid modeling

To simplify notation, let the current virtual center be p(i), and the opposite

virtual center be p̃(i) = p(i) ± 2
ωmax

e
(i)
2 . Let d̃i = C(i) − p̃(i) and let Ω̃i denote the

angle between e
(i)
1 and d̃i, see Figure 4.1.

As in the previous section, we define the state-space O = R4N . Let A
(i)
1 ,

. . . , A
(i)
4 be the set of points in O where a vehicle i can flow continuously in each of

the four modes. We present a brief description of these sets followed by a precise

set definition.

(1) An individual vehicle can be in A
(i)
1 (resp. A

(i)
3) if the centroid is in

front of the left (resp. right) virtual center at p(i), and if p(i) is not sufficiently

close to C(i). Additionally, the improvement from switching between forward-

left to forward-right (resp. vice-versa) given by Lemma 25 must be better than

β. However, if the opposite virtual center p̃(i) is not in Q, then the vehicle may

maintain its current virtual center despite violating the improvement threshold β.

A
(i)
1 = {x ∈ O | x(i) ∈ SEQ(2)× {1}, e(i)1 · d(i) ≥ ǫ,

M (i)‖d(i)‖2 −M (i)‖d̃i‖2 ≤ β, ‖d(i)‖ ≥ ǫ}
∪ {x ∈ O | x(i) ∈ SEQ(2)× {1}, e(i)1 · d(i) ≥ ǫ, p̃(i) ∈ Qc, ‖d(i)‖ ≥ ǫ},
A

(i)
3 = {x ∈ O | x(i) ∈ SEQ(2)× {3}, e(i)1 · d(i) ≥ ǫ,

M (i)‖d(i)‖2 −M (i)‖d̃i‖2 ≤ β, ‖d(i)‖ ≥ ǫ}
∪ {x ∈ O | x(i) ∈ SEQ(2)× {3}, e(i)1 · d(i) ≥ ǫ, p̃(i) ∈ Qc, ‖d(i)‖ ≥ ǫ},

75

(2) A vehicle can be in A
(i)
2 (resp. A

(i)
4) if C(i) is behind the left (resp. right)

virtual center p(i), or if p(i) is on the boundary Q and heading outwards, or if p(i)

is sufficiently close to C(i).

A
(i)
2 = {x ∈ O | x(i) ∈ SEQ(2)× {2}, e(i)1 · d(i) ≤ ǫ, ‖d(i)‖ ≥ ǫ}
∪ {x ∈ O | x(i) ∈ SE∂Q(2)× {2}, e(i)1 · n̂in ≤ 0}
∪ {x ∈ O | x(i) ∈ SEQ(2)× {2}, ‖d(i)‖ ≤ ǫ} ,

A
(i)
4 = {x ∈ O | x(i) ∈ SEQ(2)× {4}, e(i)1 · d(i) ≤ ǫ, ‖d(i)‖ ≥ ǫ}
∪ {x ∈ O | x(i) ∈ SE∂Q(2)× {4}, e(i)1 · n̂in ≤ 0}
∪ {x ∈ O | x(i) ∈ SEQ(2)× {4}, ‖d(i)‖ ≤ ǫ} .

The hysteresis variables 0 < ǫ < ǫ < ǫ serve to insure that Zeno effects do not

occur. Combining these sets together, the entire system can flow if x ∈ A where

A =
N⋂

i=1

(

A
(i)
1 ∪ A(i)

2 ∪ A(i)
3 ∪ A(i)

4

)

. (4.17)

When the system configuration x ∈ A, the state evolves under the map F .

We present flow maps for individual vehicles and then compose them to form F .

Let F (i)(x) = (ṗ
(i)
1 , ṗ

(i)
2 , θ̇

(i), l̇(i))T with:

F
(i)
1 (x) = (cos θ(i), sin θ(i),

2Ω(i)ωmax

π
, 0)T ,

F
(i)
2 (x) = (cos θ(i), sin θ(i), ωmax, 0)

T ,

F
(i)
3 (x) = (cos θ(i), sin θ(i),

2Ω(i)ωmax

π
, 0)T ,

F
(i)
4 (x) = (cos θ(i), sin θ(i), −ωmax, 0)

T .

Then, for any x ∈ A,

F (x) = (F (1)(x), · · · , F (N)(x))T ,

F (i)(x) = F
(i)
k (x) ⇐⇒ l(i) = k ∈ {1, 2, 3, 4}.

(4.18)

We now describe the subset of O where discrete jumps can occur. We will

consider:

1. switching from forward-left to forward-right, B
(i)
1 = {x ∈ O | x(i) ∈ SEQ(2)×

{1}, e(i)1 · d(i) ≥ ǫ, M (i)(‖d(i)‖2 − ‖d̃i‖2) ≥ β, p̃(i) ∈ Q} ,

76

2. switching from forward-right to forward-left, B
(i)
2 = {x ∈ O | x(i) ∈ SEQ(2)×

{3}, e(i)1 · d(i) ≥ ǫ, M (i)(‖d(i)‖2 − ‖d̃i‖2) ≥ β, p̃(i) ∈ Q} ,

3. switching from forward-left to hover-left, B
(i)
3 = {x ∈ O | x(i) ∈ SEQ(2) ×

{1}, e(i)1 · d(i) ≤ ǫ} ∪ {x ∈ O | x(i) ∈ SE∂Q(2) × {1}, e(i)1 · n̂in ≤ −ǫ} ∪ {x ∈
O | x(i) ∈ SEQ(2)× {1}, ‖d(i)‖ ≤ ǫ},

4. switching from hover-left to forward-left, B
(i)
4 = {x ∈ O | x(i) ∈ SEQ(2) ×

{2}, e(i)1 · d(i) ≥ ǫ, e
(i)
1 · n̂in ≥ 0, ‖d(i)‖ ≥ ǫ}

5. switching from forward-right to hover-right, B
(i)
5 = {x ∈ O | x(i) ∈ SEQ(2)×

{3}, e(i)1 · d(i) ≤ ǫ} ∪ {x ∈ O | x(i) ∈ SE∂Q(2) × {3}, e(i)1 · n̂in ≤ −ǫ} ∪ {x ∈
O | x(i) ∈ SEQ(2)× {3}, ‖d(i)‖ ≤ ǫ} , and

6. switching from hover-right to forward-right. B
(i)
6 = {x ∈ O | x(i) ∈ SEQ(2)×

{4}, e(i)1 · d(i) ≥ ǫ, e
(i)
1 · n̂in ≥ 0, ‖d(i)‖ ≥ ǫ}

Similar to the previous section, we define

B =

N⋃

i=1

6⋃

k=1

B
(i)
k . (4.19)

With the switching domain defined, we present the jump map G. Let

g
(i)
1 (x), . . . , g

(i)
6 (x) be the maps for an individual vehicle i. These maps are:

g
(i)
1 (x) = (3, p(i) − 2

ωmax
e
(i)
2 , θ

(i)) ,

g
(i)
2 (x) = (1, p(i) +

2

ωmax
e
(i)
2 , θ

(i)) ,

g
(i)
3 (x) = (2, p(i), θ(i)) ,

g
(i)
4 (x) = (1, p(i), θ(i)) ,

g
(i)
5 (x) = (4, p(i), θ(i)) ,

g
(i)
6 (x) = (3, p(i), θ(i)) .

We combine the above functions for each vehicle and obtain

G(i)(x) =
{
(x(1), . . . , g

(i)
k (x), . . . , x(N)) | x ∈

6⋃

k=1

B
(i)
k

}
.

77

The complete set-valued jump map is then

G(x) =

N⋃

i=1

G(i)(x) . (4.20)

Proposition 26. The hybrid system described in (4.17)–(4.20) satisfy the Basic

Conditions of [25], Section-VI. The proof for this is similar to that of Proposi-

tion 23. �

4.3.3 Convergence analysis

We now apply the hybrid LaSalle principle.

Theorem 27. Let U = O. Given the hybrid system for fixed forward velocity

vehicles defined above and with virtual center dynamics (4.5), any precompact tra-

jectory x(t, j) with rge x ∈ U , will approach the set of points

M = {x ∈ O | ‖C(i) − p(i)‖ ≤ ǫ, ∀ i ∈ {1, . . . , N}} . (4.21)

Proof. We choose to analyze the system using the cost functionH(P,V) from (4.11)

with P being the locations of the virtual centers. It can be shown that H is locally

Lipschitz on O [16].

For all x ∈ A, uA = LFH(x). It can be seen that

LFH(x) =
N∑

i=1

2M (i)(p(i) − C(i))T ·
(

1∓ Ω(i)

ωmax

)(

cos θ(i)

sin θ(i)

)

.

When all agents are in a hovering mode, A
(i)
2 , A

(i)
4 , ωi = ±ωmax and the virtual

center remains stationary, therefore Ḣ = 0. When all agents are in forward mode,

we have

Ḣ =
N∑

i=1

2M (i)

(

1∓ 2Ω(i)

π

)

(p(i) − C(i))T

(

cos θ(i)

sin θ(i)

)

.

Additionally, (p(i) − C(i)) ·
(

cos θ(i), sin θ(i)
)

= −d(i) · e(i)1 = − cos Ω(i). Thus,

Ḣ =
∑N

i=1−2M (i)
(

1∓ 2Ω(i)

π

)

cosΩ(i) . A vehicle can only be in forward mode if

d(i) · e(i)1 ≥ ǫ, or equivalently, if Ω(i) ∈
(
−π

2
, π
2

)
(see the definition of A

(i)
1 and A

(i)
3

78

in (4.17)). Therefore cosΩ(i) ∈ [0, 1) and 2Ω(i)

π
∈ (−1, 1) and Ḣ ≤ 0 for all x ∈ A,

and the inequality is strict if there is at least one vehicle in forward motion.

Since G is set-valued, uB(x) = maxx+∈G(x){H(x+)−H(x)}. The cost func-

tion (4.11), does not have any dependence on l(i) or θ(i). Thus, H changes only if

virtual center positions change. However, when an agent switches from l(i) = 1 to

l(i) = 3 or vice-versa, Lemma 25 insures that the difference H(P̃ , Ṽ)−H(P,V) ≤
−β. Therefore, for all discrete jumps with x ∈ B, uB(x) = maxx+∈G(x){H(x+) −
H(x)} ≤ 0.

All conditions of the hybrid LaSalle invariance principle have been satisfied.

The precompact trajectories x will approach the largest weakly invariant set in

L = H−1(r) ∩ U ∩
(

u−1
A (0) ∪ u−1

B (0)
)

= H−1(r) ∩
[
N⋂

i=1

(A
(i)
2 ∪ A(i)

4)

]

∪
[
N⋃

i=1

(B
(i)
3 ∪ · · · ∪ B(i)

6)

]

.

for some r ∈ H(U). Note that H−1(r) represents some level set of the cost func-

tion (4.11). We now check for weakly invariant trajectories that remain in L. We

do this by assuming that one vehicle is in a switching state, and show that it must

switch to a flowing state, and remain there for a non-zero amount of time. Then

we show that the only flowing state which remains in a level set for all time is the

hovering state with ‖p(i) − C(i)‖ ≤ ǫ for all i ∈ {1, . . . , N}.
Suppose there exists a trajectory x̃(t, j) with H(x̃) = r for all (t, j) ∈

R≥0 × N such that x̃(t0, j0) ∈ B. This implies that there exists i∗ and k∗ such

that x̃(t0, j0) ∈ B
(i∗)
k∗ . We confine our analysis to the cases where x̃(t0, j0) ∈

(B
(i)
3 ∪ · · · ∪ B(i)

6). Let x̃+ denote the state that x̃(t0, j0) jumps to. The following

transitions are possible: (1) x̃ ∈ B(i)
3 7→ x̃+ ∈ A(i)

2 , (2) x̃ ∈ B(i)
4 7→ x̃+ ∈ A(i)

1 ∪B(i)
1 ,

(3) x̃ ∈ B(i)
5 7→ x̃+ ∈ A(i)

4 , (4) x̃ ∈ B(i)
6 7→ x̃+ ∈ A(i)

3 ∪B(i)
2 .

We note that for the jumps that could result with x+ ∈ B(i)
1 ∪ B(i)

2 (cases

2 and 4), the system must jump again, but this jump decreases the cost function.

In other words, these jumps take the system outside of the set L. The remaining

possibilities result with x+ ∈ A(i). The only possible trajectories that remain in the

set L are those that jump to flowing states, x+ ∈ A. Specifically, x+ ∈ A(i)
2 ∪ A(i)

4

for all i ∈ {1, . . . , N}. Now we examine this case to arrive at the final result.

79

Suppose that there exists a trajectory x̃(t, j) with H(x̃) = r for all (t, j) ∈
R≥0 × N. such that x̃(t0, j0) ∈ A(i)

2 ∪ A(i)
4 for all i ∈ {1, . . . , N}. An agent in A

(i)
2

(resp. A
(i)
4) can only jump to forward motion by being in B

(i)
4 (resp. B

(i)
6). Since

all agents are rotating about their virtual centers, the locations of the centroids,

C(i) for all i ∈ {1, . . . , N}, remain fixed. This implies that d(i), i ∈ {1, . . . , N},
also remain fixed. If there exists one agent i∗ such that ‖d(i∗)‖ ≥ ǫ, then a jump

eventually occurs since all vehicles rotate about their virtual centers with constant

angular velocity. The system configuration will be x̃(t1, j0) ∈ B(i∗)
4 (resp. x̃(t1, j0) ∈

B
(i∗)
6) for some t1 ≥ t0. The resulting jump necessarily results in x̃+ ∈ A(i)

1 ∪ A(i)
3 ,

and the trajectory x̃ leaves the level set H(x̃) = r.

Thus, the only weakly invariant set in L is exactly that of (4.21).

4.4 Simulations

We simulate N = 8 unicycles in Q ⊂ R2 = [0, 10] × [0, 10]. The density

function, φ, is composed of 3 Gaussian distributions φ(q) = 0.05 + 3
[

e−
‖q−r1‖

2

2 +

e−
‖q−r2‖

2

2 + e−‖q−r3‖2
]

, where r1 = (8, 2), r2 = (8, 4) and r3 = (3, 7). The agent

positions and orientations were randomly distributed in the bottom left corner,

l(i) = 1 for all i ∈ {1, . . . , N}. We chose the control gains to be kθ(i) = 5 and

kp(i) = sat ‖C(i)−p(i)‖. Note that any positive kθ(i) and kp(i) will work. Figure 5.25

shows that the wheeled vehicles with variable forward velocity do in fact converge

to near-centroidal configurations, and that the corresponding cost function H is

nonincreasing.

We present the case where vehicles have a fixed forward velocity in Fig-

ure 4.4. All vehicles began with random positions and orientations in the lower

left corner. All agents started with a left virtual center, but agent 5 switches to a

right virtual center early in the simulation. Similar to the case of variable forward

velocity vehicles, the fixed forward velocity vehicles navigate their virtual centers

to the centroids of their Voronoi cells.

80

11

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0 5 10

500

1000

1500

t (sec)

H

Figure 4.3: Wheeled vehicle deployment simulation. The agents start in the lower
left corner, denoted by the ‘o’. Path lines are shown in the left figure, and final
positions and orientations in the right figure.

1
2

3

4

5

6

7 8

1
2

3

4

5

6

7 8

0 5 10 15 20

500

1000

1500

t (sec)

H

Figure 4.4: Fixed forward velocity deployment simulation. The agents start in
the lower left corner and path lines are shown in the left figure with final positions
and orientations shown in the right figure. Virtual center locations are denoted by
a dot.

Chapter 5

Deployment with Environmental

Constraints

In this chapter, we consider the case where the environment prevents an

agent from maintaining a constant position, or even revisiting previous locations.

Specifically, we will assume that the agents move in an a priori known flow field,

but the field is faster than the absolute maximum speed of an agent. We wish to

enable a group of cooperative vehicles to move such that the area of the reachable

set of points in the flow environment is maximized. We will draw upon previous

work on path planning and optimal control and apply it to cooperative motion

control.

The problem of path planning in a flow field has its roots in the classi-

cal optimal control problem known as Zermelo’s navigation problem [91], whose

solution relies on use of the Pontryagin minimum principle as in [7]. Motion plan-

ning for single vehicles in a flow has been lately studied in e.g. [67, 11]. More

recently, [51, 70, 82] characterizes the optimal trajectories for a Dubins-like vehicle

in the presence of constant flows, while [50] presents a robust control strategy for a

Dubins’ vehicle in non-constant flows. The paper [71] provides a generalization of

time-optimal course changes for a Dubins vehicle moving across a heterogeneous

terrain, and across boundaries where the vehicle dynamics change.

Regarding cooperative motion of multiple vehicles in a flow environment,

the authors in [59] have demonstrated stable formation control in the presence of

81

82

an external time-invariant flow field. However, that work assumes that individual

vehicles have full controllability. Similarly, [40] addresses the case of maintaining

a stable formation for sampling in an ocean environment with exogenous currents,

while [81] combines time-optimal trajectories in a constant flow field with formation

stabilization.

With the exception of [70], previous work has considered the motion control

problem of vehicles in a slow flow. That is, the vehicles had sufficient actuation to

move against the flow. We utilize a simple kinematic model as in [59] to consider

flows which are both spatially varying and fast. Furthermore, much previous work,

such as [70], consider constant flow fields. In the interest of obtaining analytic

solutions, we consider piecewise constant flow fields as an approximation of smooth

spatially varying flows. Such a consideration introduces several interesting effects

regarding time-optimal trajectories over discontinuous flows. The work of [71]

considers a similar situation, except that the effect of the environment only imposes

a change in maximum velocity of a vehicle. This is not the case for the work in

this chapter due to the directionality of flows in the environment.

This chapter expands on the results found in [37] and [39] by lifting tech-

nical assumptions related to the flow environment. Whereas the results in [39] for

piecewise constant flows relied on assumptions relating how neighboring regions

of different constant flows are joined, this chapter removes those assumptions and

we incorporate obstacles in the flow as well. We study the different cases of time-

optimal trajectories that may arise in a piecewise constant flow and use these cases

as a basis of a gradient-based coverage motion algorithm.

This chapter is organized as follows. The next section details the multi-

vehicle coverage problem and formally establishes definitions used throughout the

chapter. We provide a synopsis of [37] in Section 5.2 for the case of smooth flow

environments. We then study time-optimal trajectories in a piecewise constant flow

in the next two sections. This allows for a definition of the partitioning scheme and

a solution for the area coverage maximization problem presented in Section 5.5.

Finally, we demonstrate the area maximizing algorithm in simulations found in

Section 5.6.

83

u(i)

V

θ

α
β

Figure 5.1: This diagram shows the different angular quantities for calculating
β(x), the maximum possible angle away from α(x) that results in a time-optimal
trajectory in constant flow. The dashed circle represents the set of inputs u(i) with
magnitude 1.

5.1 Problem statement and definitions

We assume the following kinematic model:

ṗ(i) = u(i) + V (p(i)) , (5.1)

where u(i)(t) is piecewise smooth and ‖u(i)‖ ≤ 1. Since we are concerned with

time-optimal trajectories, u(i) = (cos θ(i), sin θ(i))T, see [7]. Assume that ‖V ‖ > 1.

We define two quantities related to the flow field and motion of the agents,

see Figure 5.1. The first is the flow direction:

α(x) = atan2 (V2(x), V1(x)) . (5.2)

Next, β : X →
(
0, π

2

)
denotes the maximum angle away from α(x) that results

in a time-optimal trajectory in constant flow. More precisely, given V (x) and

‖u(i)‖ = 1, the endpoint of an agent’s velocity vector (5.1) lies on the dashed circle

of Figure 5.1. Using trigonometry, one can show that

β(x) = arcsin

(
1

‖V (x)‖

)

. (5.3)

Additionally, the choice of headings θ that result in these maximal travel directions

are θ = α(x)± (β(x)+ π
2
). The feasible set of directions that an agent at p(i) would

be able to travel in is then the interval [α(p(i))− β(p(i)), α(p(i)) + β(p(i))].

Definition 12 (Reachable set). We define the reachable set, R(p(i)), of an agent

at position p(i) to be the set of points x ∈ X that an agent can reach in finite

time starting from the initial position p(i) and using a piecewise smooth control

84

input u(i)(t) with ‖u(i)‖ ≤ 1. The T -limited reachable set, RT (p
(i)), of an agent

at position p(i), is the set of points that an agent can reach within time T using a

piecewise smooth control input u(i)(t) with ‖u(i)‖ ≤ 1.

Thus, R : X ⇉ R
2 and RT : X ⇉ R

2 are set-valued maps.

Concerning solutions of a continuous ODE, we have the following result

detailing the “closeness” of solutions to an ODE with initial conditions that are

“close” to each other.

Theorem 28 ([34], Theorem 3.5). Let f(t, x, λ) be continuous in (t, x, λ) and

locally Lipschitz in x (uniformly in t and λ) on [t0, t1]×D×{‖λ−λ0‖ < c}, where
D ⊂ Rn is an open connected set. Let y(t, λ0) be a solution of ẋ = f(t, x, λ0) with

y(t0, λ0) = y0 ∈ D. Suppose y(t, λ0) is defined and belongs to D for all t ∈ [t0, t1].

Then, given ǫ > 0, there is δ > 0 such that if

‖z0 − y0‖ < δ and ‖λ− λ0‖ < δ

then there is a unique solution z(t, λ) of ẋ = f(t, x, λ) defined on [t0, t1], with

z(t0, λ) = z0, and z(t, λ) satisfies

‖z(t, λ− y(t, λ0)‖ < ǫ , ∀ t ∈ [t0, t1] .

To keep the problem analytically tractable, we restrict our attention to a

time invariant flow case and examine two distinct but complementary flow environ-

ments. First, we characterize the reachability sets for vehicles in affine flows and

we use these to describe a vehicle deployment strategy in constant and affine flow

fields. Then, we look at piecewise constant flow environments, where the optimal

trajectories found for the constant flow case are adjusted as they traverse multiple

flow regions.

Our objective will be to define a distributed algorithm for the deployment of

agents in a flow environment. Specifically, we wish to maximize the area coverage

metric:

H(p(1), . . . , p(n)) =
∫

⋃
RT (p(i))

1dx . (5.4)

This must be done while taking into account the flow environment and how it

affects the dynamics of each agent. In order to do this, we will follow the next

85

steps: (a) determine minimum time trajectories in the flow environment, and (b)

use knowledge of the properties of these optimal trajectories to compute a gradient

direction. We will present the above steps for the two flow scenarios described

previously.

5.2 Affine flows

In this section we characterize the reachable set of an agent in an affine flow

field. We will analyze some of the topological properties of these sets.

For such flows, we have the following standing assumption:

Assumption 2. The coverage domain X is simply connected (has no holes) and

the vector field V describing the flow is:

1. time invariant and affine over X, V (x) = Ax+ b, and

2. ‖V (x)‖ > 1 for all x ∈ X.

5.2.1 Properties of the reachable set

Shown previously, an agent cannot turn more than β(x) radians away from

the flow direction α(x) for any x ∈ X . Thus, by choosing u(i) such that an agent

is always heading ±β away from α, we can compute the boundary of the reachable

set.

To facilitate the characterization of the reachable sets, we consider the class

of control inputs:

u(i)(p(i), K) =

[

cos(α(p(i)) +K
(
β(p(i)) + π

2
)
)

sin(α(p(i)) +K
(
β(p(i)) + π

2
)
)

]

, (5.5)

for K ∈ [−1, 1]. We define the trajectory γ(t,K) to be the solution of (5.1)

using (5.5) for a fixed K with initial position p(i). Then, the two trajectories

γ(t,−1) and γ(t, 1) define the boundary of the reachable set R(p(i)).
We say that a basis of vectors {a, b} in the plane is positively (resp. nega-

tively) oriented if the vector cross product in R
3, a× b, yields a vector pointing in

86

p(i)

x∗

D

µ

Figure 5.2: Cartoon to aid in proof of Proposition 29. The boundary γ(t, 1) is
shown as the dotted path and γ(t,−1) is the dot-dashed path. The flow field is
shown as thick gray arrows. If the two trajectories intersect at a point other than
p(i) then the intersection must be oriented as shown at x∗.

a positive (resp. negative) direction out of the plane. The next two results address

properties of the reachable set.

Proposition 29. Under Assumption 2, the boundaries γ(t, 1) and γ(t,−1) inter-
sect only at γ(0, 1) = γ(0,−1) = p(i).

Proof. We show this by contradiction. Suppose γ(t, 1) and γ(t,−1) intersect at

some point x∗ and time t∗ other than the initial condition p(i). Since β ∈
(
0, π

2

)
,

the angle between the velocity vectors γ̇ (t∗,−1) and γ̇ (t∗, 1) is less than π. Fur-

thermore, the velocity vectors {γ̇(t∗,−1), γ̇(t∗, 1)} form a positively oriented basis

by definition, see Figure 5.2.

Consider the oriented closed curve µ starting from p(i), following γ(t, 1) until

x∗, and returning to p(i) along γ(t,−1). By the definition given in (5.5), we have

that {γ̇(t,−1), V (γ̇(t,−1))} and {V (γ̇(t, 1)), γ̇(t, 1)} are positively oriented bases;

see Figure 5.2. Thus, along µ the flow field V must always be pointing outwards.

Let D be the connected and compact region enclosed by C. Since X has

no holes, D ⊂ X . Let Ṽ = −V , then D is a positively invariant set under the flow

ẋ = Ṽ (x) since Ṽ points inwards for all x ∈ ∂D = µ. Thus by a simple extension

of the Brouwer Fixed point theorem [3], there exists an x ∈ D such that Ṽ (x) = 0.

This implies that V (x) = 0, a contradiction under Assumption 2.

87

Theorem 30. Under Assumption 2, the set of reachable points using (5.5) for

K ∈ [−1, 1] has no holes, and is equal to the set R(p(i)).

Proof. We first prove the absence of holes. Suppose that there is a hole, D ⊂ X ,

in the reachable set. The set D is bounded and connected, but there does not

exist a control input u(i) such that the solution of (5.1) enters D. However, given
ǫ > 0, there exists a r ∈ R(p(i)) such that infx∈D ‖r − x‖ < ǫ. That is, we can get

arbitrarily close to D.
Consider the closure D̄. Along ∂D̄, the flow field V must always point

outwards from (or tangent to) D at ∂D. If not, then solutions of (5.1) can enter

D for u(i) = 0. If we consider the reverse flow Ṽ = −V , then D̄ is an invariant set.

Similar to the proof of the previous result, this implies that there exists a point

x∗ ∈ D such that V (x∗) = 0, a contradiction of Assumption 2. Thus, no holes in

the reachable set exist.

In conjunction with Proposition 29, that R(p(i)) has no holes implies that

the entire space between the curves γ(t,−1) = γ(t,−1) and γ(t, 1) = γ(t, 1) is

the reachable set R(p(i)). Now we show that the set of solutions γ(t,K) for fixed

K ∈ [−1, 1] can reach any point in the reachable set.

Let R̃(p(i)) be the set of points corresponding to solutions of γ(t,K). Sup-

pose that D is a hole in this restricted reachable set. That is, D ⊂ R(p(i)), but
D ∩ R̃(p(i)) = ∅. Then it cannot be that γ(t,−1) or γ(t, 1) reach a point in ∂D
for some t. Otherwise, suppose that there exists x0 ∈ ∂D such that γ(t0,−1) = x0

for some t0. Take T > t0 then, by Theorem 3.5 in the standard reference [34], for

every ǫ > 0 there is a δ > 0 such that for every |K − (−1)| < δ, it must be that

‖γ(t,−1)− γ(t,K)‖ < ǫ for all t ≤ T . In particular, ‖x0 − γ(t0, K)‖ < ǫ.

Consider one such solution γ(t,K1) satisfying 0 < |K1 − (−1)| < δ. By

continuity of solutions and for sufficiently large T , in order for γ(t,K1) to stay

outside of D, there must be some t′ such that γ(t′, K1) = x0. However, this is a

contradiction because u(p(i),−1) is the unique control input to reach points along

the boundary of the reachable set.

In other words, we can guarantee that there is a K0 ∈ (−1, 1) sufficiently

close to −1 such that the set of solutions for K ∈ [−1, K0] does not have any

88

Figure 5.3: An example of the reachable set R(p(i)) with solid line and the T -
reachable set in the dashed line.

holes in it. Now, it is easy to see that {γ(K, t) |K ∈ [−1, K0]} is homotopically

equivalent to the set {γ(K, t) |K ∈ [−1, 1]} by using a continuous deformation from

[−1, K0] to [−1, 1]. Since the property of being simply connected is a homotopic

invariant, the set {γ(K, t) |K ∈ [−1, 1]} can not have any holes in it.

The fact that there are no holes in the reachable set greatly simplifies the

analysis of area coverage for differentiable flows. This insures that the boundaries

of the reachable set come only from the extremal paths γ(t,±1), and intersections

of R(p(i)) with the flow domain boundary ∂X .

5.2.2 T -limited reachable set

In order to find RT (p
(i)), one must then solve the following minimum-time

optimal control problem:

minimize: J =

∫ tf

0

1dt ,

subject to: ṗ(i) = u(i) + V (p(i)) , ‖u(i)‖ ≤ 1 , (5.6)

p(i)(0) and p(i)(tf) given .

89

For a smooth flow field V , this is known as Zermelo’s problem, and a solution can

be found [7]. The optimal solution is to consider a control input of the form

u(i) =

(

cos θ(i)

sin θ(i)

)

,

θ̇(i) = sin2 θ(i)
∂V2
∂x1

+ sin θ(i) cos θ(i)
(
∂V1
∂x1
− ∂V2
∂x2

)

(5.7)

− cos2 θ(i)
∂V1
∂x2

.

The minimum-time trajectories are obtained by using this input in combination

with (5.1).

To define the T -limited boundary, one can integrate (5.1) using (5.7) to time

T starting at the agent location p(i) and initial heading θ(i)(0) ∈ [α−β−π
2
, α+β+π

2
].

The solutions for various initial headings at time T are then recorded and combined

with the solutions γ(t,−1) and γ(t, 1) for t ∈ [0, T] to give the boundary ofRT (p
(i)).

See Figure 5.3 for an example of such a set. Finally, we define τ : X × X →
R≥0∪{∞} to be the minimum travel time between two points in X . The minimum

travel time τ(x, y) is from the solution of the optimal control problem (5.6) for an

agent starting at x and ending at y. Due to the flow environment, in general,

τ(x, y) 6= τ(y, x).

Remark 31. We restrict ourselves to affine flows due to the fact that the Pon-

tryagin Minimum principle is a necessary condition for optimality. Solutions sat-

isfying (5.7) may be maximum-time solutions, or may no longer be time-optimal

after a point along a solution. For the Zermelo problem with fast flows, there will

be a set of initial heading choices that result in maximum-time solutions. For any

feasible direction of travel in a fast flow, there are two possible initial headings that

result in motion along this feasible direction. One corresponds to moving with the

flow, and the other moves against the flow. The initial headings that move against

the flow correspond to θ0 /∈ [α−(β+ π
2
), α+(β+ π

2
)]. See Figure 5.4 for a graphical

explanation of this.

The case of a time-optimal solution that ceases to be optimal is what is

known in the optimal control literature as a conjugate point. Roughly speaking,

90

φ
p(i) V

u1

u2 θ1θ2

Figure 5.4: Diagram for time optimality in a fast flow. Suppose agent i wishes
to travel in the feasible direction φ. Using vector addition and trigonometric
arguments, one can show that there exist two possible control inputs u1, u2 with
headings of θ1, θ2 that achieve motion in the direction of φ. However, clearly one
choice results in faster motion along φ, and hence, that choice is time-minimizing.

a conjugate point along an optimal trajectory (or geodesic) occurs wherever that

geodesic intersects another geodesic. However, due to the result in [76], for the

case of affine flow fields, optimal trajectories do not have conjugate points. In

this way, T can be arbitrarily large without risk of incorrectly approximating the

T -limited reachable set by joining the endpoints of solutions of the Pontryagin

minimum principle, (5.6) and (5.7). •

We say that agents i and j are reachable set neighbors ifRT (p
(i))∩RT (p

(j)) 6=
∅. Thus, agent i is trivially a neighbor of itself. Additionally, the neighbor set of

i, is

N (i)
flow = {j ∈ {1, . . . , n} | RT (p

(i)) ∩RT (p
(j)) 6= ∅} .

5.2.3 Special flow examples

Following Assumption 2, we consider affine flows of the form

V (x) = Ax+ b , (5.8)

91

‖b‖T T

Figure 5.5: The T -limited reachable set RT (p
(i)) when the flow field is a constant.

The T -limited boundary connecting γ(t,−1) and γ(t, 1) is a circular arc centered
‖b‖T units downstream with radius T .

where A ∈ R2×2 and b ∈ R2 are arbitrary constants. The dynamics (5.1) take the

form

ṗ(i) = Ap(i)+b+u(i) =

(

a11 a12

a21 a22

)

p(i)+

(

b1 + cos θ(i)

b2 + sin θ(i)

)

, i ∈ {1, . . . , N} . (5.9)

The time-optimal steering input given by (5.7) with the affine flow parameters is

˙θ(i) = a21 sin
2 θ(i) + (a11 − a22) sin θ(i) cos θ(i) − a12 cos2 θ(i) , i ∈ {1, . . . , N} .

Note that the above differential equation is separable, and one can obtain an

explicit solution for θ(i)(t) up to quadratures and inversion. The system described

by (5.9) is linear in p(i), and so the time-optimal trajectories in an affine flow are

given by

p(i)(t) = eAtp(i)(0) +

∫ t

0

eA(t−s)(b+ u(i)(s))ds , i ∈ {1, . . . , N} . (5.10)

For the constant flow case, A = 0 and ‖b‖ > 1, the set RT (p
(i)) resembles

Figure 5.5. The curves γ(i)(t,−1) and γ(i)(t, 1) are straight line segments at angles

±β away from the flow direction. They are joined by a circular arc with radius T

centered at a distance ‖b‖T downstream.

Figure 5.6 depicts some typical variations on flows of the form (5.8). In

areas of faster flow, the reachable sets are narrower and in regions of flow where

‖V (x)‖ is only slightly larger than 1, the reachable sets tend towards a circular

appearance.

92

Figure 5.6: Examples of reachable set regions RT (p
(i)) with flows of the

form (5.8). Agents have a maximum speed of 1, and T = 5. Top: a11 = 0.05,
b1 = 1, a22 = b2 = 0. Bottom: a11 = 0.05, b1 = 1, a22 = −0.25 and b2 = 0.

5.3 Piecewise constant flows – simple optimal

trajectories

This section and the following section detail the various types of optimal

trajectories that may occur in a piecewise constant flow. We will work now under

the following assumption:

Assumption 3. The flow environment X may have obstacles and:

1. the flow V is piecewise constant. That is, we can partition X into m regions,

X =
⋃m
k=1Xk such that V|Xk is constant and satisfies ‖V|Xk‖ > 1 for all k,

2. the regions Xk, k ∈ {0, . . . , m} are separated by piecewise differentiable

curves. Let ψk,ℓ : Xk → R be piecewise differentiable and the curve defined

by ψk,ℓ(x) = 0 separates the flow regions k and ℓ ∈ {1, . . . , m}, and

3. along the interface between two flows k and ℓ, the flow velocity is in the

convex hull of the two respective velocities. That is, V (x) ∈ co{V|Xk , V|Xℓ}
for {x | ψk,ℓ(x) = 0}. •

Under this assumption, the optimal paths in the interior of each region Xk

will be straight lines since the flow in each region is constant. Suppose an agent

begins with an initial position of p0 and heading θ0. Then, there will be a sequence

of optimal course changes corresponding to each time an agent travels into a new

flow region. We enumerate these with a subscript ℓ. Also, t̄ℓ and x̄ℓ will be the time

and location of a trajectory’s crossing from the ℓ − 1th region to the ℓth region,

93

with the convention that t̄0 = 0 and x̄0 = p0. When necessary, we denote the first

and second components of x̄ℓ as x̄ℓ,1 and x̄ℓ,2, respectively.

5.3.1 Catalog of optimal trajectories

Before launching into the detailed description of each type of trajectory and

the manner in which they occur, we provide a brief overview of the various types

of optimal trajectories in a piecewise constant flow. This section and the next will

detail what can occur if trajectories intersect either the flow domain boundaries,

∂X , or the boundaries between two neighboring flows, ∂Xk \ ∂X .

In the case that a trajectory intersects the flow domain boundary ∂X , one

side of the boundary is where an agent may perform motion. The other side

represents an impassable region, either a constraint in allowable positions imposed

by the user or an obstacle in the flow field. A trajectory can either intersect

∂X transversely or tangentially. In the case of a transverse intersection, a collision

effectively occurs and the trajectory does not continue. However, interesting results

can occur for tangential intersections, and this will be detailed in the next main

section.

For the case that a trajectory intersects a boundary between two flows,

defined as a level set where ψk,ℓ(x) = 0, this intersection can again occur either

transversely or tangentially. The former case will be addressed in this section while

the latter will be examined in the next section.

5.3.2 Simple trajectories

V1
V2 V3

ψ1,2(x) = 0
ψ2,3(x) = 0

Figure 5.7: A general piecewise flow case

To determine optimal trajectories for a simple two-region switched system,

we determine the direction change that the optimal paths undergo at the interface

94

V− = (c1, c2) V+ = (d1, d2)

x0

xf

x̄

ψ(x) = 0

Figure 5.8: Diagram for deriving the relation between incoming and outgoing
headings at the interface between two regions of different, but constant, flows.

.

between two regions. The following analysis is detailed further in [7]. Optimal

trajectories in this section’s formulation will be called simple trajectories.

Referencing Figure 5.8, the vehicle begins at x0, the interface between two

regions X1, X2, occurs at the smooth level set of ψ(x) = 0, and the two constant

flows are given by V− = (c1, c2)
T and V+ = (d1, d2)

T. We wish to solve for the

minimum-time trajectory from x0 to a point xf after crossing the interface between

the two flows at some point x̄. For minimum time problems, the cost function will

be:

J =

∫ tf

0

L(x, u, t)dt =

∫ tf

0

1dt = tf .

The vehicle has dynamics ẋ = F−(x, θ) or ẋ = F+(x, θ) depending on which side

of the flow interface it is on, where:

F−(x1, x2, θ) =

(

cos θ + c1

sin θ + c2

)

, if x ∈ X1,

F+(x1, x2, θ) =

(

cos θ + d1

sin θ + d2

)

, if x ∈ X2 .

We also have the interior point boundary condition that for some time 0 < t̄ < tf ,

ψ(x(t̄)) = 0. One can now define the Hamiltonians for each set of dynamics as:

H1(x, θ, λ) = 1 + λ1(cos θ + c1) + λ2(sin θ + c2) ,

H2(x, θ, λ) = 1 + λ1(cos θ + d1) + λ2(sin θ + d2) ,

where λ = (λ1, λ2)
T is the costate vector. The interior boundary condition can be

viewed as an additional constraint occurring at time t̄. In this way, we adjoin the

95

interior point constraint to the costate and Hamiltonian with a Lagrange multiplier

ν ∈ R. Let t̄− and t̄+ denote the time immediately before and after t̄, respectively.

Then,

λT(t̄−) = λT(t̄+) + ν
∂ψ

∂x
,

H1(x(t̄−), θ(t̄−), λ(t̄−))=H2(x(t̄+), θ(t̄+), λ(t̄+)) + ν
∂ψ

∂t
.

We have H1(x(t̄−), θ(t̄−), λ(t̄−)) = H2(x(t̄+), θ(t̄+), λ(t̄+)) because there is no time

dependence in ψ. Furthermore, for minimum-time optimal control problems with

time-invariant dynamics, the Hamiltonian is constant and equal to zero [7]. The

costate jump at t̄ is described by

λ1(t̄−) = λ1(t̄+) + ν
∂ψ

∂x1
, λ2(t̄−) = λ2(t̄+) + ν

∂ψ

∂x2
.

Using optimality with respect to the control input θ, we derive an additional set

of relations:

∂H1

∂θ
= −λ1(t̄−) sin θ− + λ2(t̄−) cos θ− = 0 ⇒ tan θ− =

λ2(t̄−)

λ1(t̄−)
,

And similarly tan θ+ =
λ2(t̄+)

λ1(t̄+)
.

Currently, there is enough information to develop a relation between the

constant control inputs θ− and θ+.

Proposition 32. Let V− = (c1, c2)
T and V+ = (d1, d2)

T be the flows in two neigh-

boring regions, and α1, α2 be their respective flow orientations. Let ξ be the ori-

entation of the normal vector of the smooth curve ψ(x) = 0 at the point where the

optimal trajectory crosses into the second flow region. A necessary condition for

an optimal trajectory across the interface of the two flow regions requires that:

1 + ‖V−‖ cos(θ− − α1)

sin(θ− − ξ)
=

1 + ‖V+‖ cos(θ+ − α2)

sin(θ+ − ξ)
. (5.11)

Given (5.11), and a fixed heading θ−, the final heading satisfies

sin θ+ =
B ± C

√
B2 + C2 − 1

B2 + C2
, (5.12)

96

where

B =
1 + ‖V−‖ cos(θ− − α1)

sin(θ− − ξ)
cos ξ − d2 ,

C =
1 + ‖V−‖ cos(θ− − α1)

sin(θ− − ξ)
sin ξ + d1 .

Proof. The above analysis leads to the following six equations:

1 + λ1(t̄−)(cos θ− + c1) + λ2(t̄−)(sin θ− + c2) = 0 ,

1 + λ1(t̄+)(cos θ+ + d1) + λ2(t̄+)(sin θ+ + d2) = 0 ,

λ1(t̄−) = λ1(t̄+) + ν
∂ψ

∂x1
,

λ2(t̄−) = λ2(t̄+) + ν
∂ψ

∂x2
,

tan θ− =
λ2(t̄−)

λ1(t̄−)
,

tan θ+ =
λ2(t̄+)

λ1(t̄+)
,

with the six unknowns: ν, θ+, λ1(t̄−), λ2(t̄−), λ1(t̄+), and λ2(t̄+). Eliminating all

but θ+, we obtain the relation
(
∂ψ

∂x1
tan θ+ −

∂ψ

∂x2

)

(1 + c1 cos θ− + c2 sin θ−) sec θ−

= −
(
∂ψ

∂x2
− ∂ψ

∂x1
tan θ−

)

(1 + d1 cos θ+ + d2 sin θ+) sec θ+ .

Substitute (c1, c2) = (‖V−‖ cosα1, ‖V−‖ sinα1) and (d1, d2) = (‖V+‖ cosα2,

‖V+‖ sinα2). The relation becomes

1 + ‖V−‖ cos(θ− − α1)
∂ψ
∂x2

cos θ− − ∂ψ
∂x1

sin θ−
= −1 + ‖V+‖ cos(θ+ − α2)

∂ψ
∂x1

sin θ+ − ∂ψ
∂x2

cos θ+
.

Let ξ be the angle of the gradient vector ∇ψ. That is, ξ = arctan

(
∂ψ
∂x2
∂ψ
∂x1

)

.

This direction is normal to the level set ψ(x1, x2) = 0. Then, the substitution
(
∂ψ
∂x1
, ∂ψ
∂x2

)

= (‖∇ψ‖ cos ξ, ‖∇ψ‖ sin ξ), leads to (5.11).

The cosine functions in the numerators of (5.11) can be expanded. Then

performing the substitution cos θ+ =
√

1− sin2 θ+ yields the equation

(A2 +B2) sin2 θ+ + 2A sin θ+ + 1− B2 = 0 .

This is quadratic in sin θ+, which results in (5.12).

97

Remark 33. This is a direct analogue to Snell’s law as it describes the relation

between incident and refracted angles for a beam of light, disregarding the light

beam’s origin. Finally, the extension to multiple region flows is straightforward;

see Figure 5.9 for a graph of the reachable set. •

Remark 34. For certain choices of initial headings θ−, the system of equations in

the proof of Proposition 32 may have no solution. These special angles correspond

to the choice of extreme headings θ− = α1 ±
(
β1 +

π
2

)
. However, the solution of

θ+ as a function of θ− has a well-defined limit as θ− → α1 ±
(
β1 +

π
2

)

Additionally, it may be that there is no solution for θ+ in (5.12). This

may occur when B2 + C2 − 1 < 0. However, since (5.12) is a necessary condition

for optimality, the fact that there is no real-valued θ+ satisfying (5.12) implies

that there is no optimal continuation of a particular trajectory that intersects the

boundary between two flows. An example of this occurs in Figure 5.18 and we will

study this case in a later section. •

X1

X2

X3

Figure 5.9: Trajectories of solutions for the case of a three region flow with
V− = (1, 2)T, V+ = (1.5, 0.5)T and V3 = (1.5,−0.5)T. The boundaries of the
regions are straight lines with angles ξ1,2 = π

6
and ξ2,3 = 0.The initial position of

the agent is at (1.5, 1) and T = 6.

98

5.4 Piecewise constant flows–optimal non-simple

trajectories

We now study how consideration of flow boundaries, obstacles, or bound-

aries between two neighboring flow regions affect the optimal trajectories. We refer

to these optimal trajectories as non-simple trajectories.

5.4.1 Obstacles

By obstacles in the flow, we refer to both holes in the flow environment

and boundaries marking impassable regions. Such phenomena may impede a

simple trajectory. We define the simply reachable set S(p0) to be the set of

points reachable with a simple trajectory, and the simply unreachable set to be

U(p0) = R(p0) \ S(p0). See Figure 5.15 for such an example.

Before introducing the next lemma, we define the path concatenation oper-

ator, ∗. Given two parametrized paths ρ1, ρ2 : [0, 1]→ R2, such that ρ1(1) = ρ2(0),

the concatenation of the two paths, ρ = ρ1 ∗ ρ2 is such that ρ(0) = ρ1(0) and

ρ(1) = ρ2(1).

Lemma 35. Let ρ be a feasible trajectory in a constant flow environment without

obstacles from ρ0 = ρ(0) to ρf = ρ(1). Choose s1, s2 ∈ [0, 1] with s1 < s2 and

let ρ1 be the section of ρ(s) for 0 ≤ s < s1 and ρ2 be the section of ρ(s) for

s2 ≤ s ≤ 1. Let the function J take a parametrized path ρ and return the time

required to traverse it in the constant flow. Suppose µ is the straight line path

from ρ(s1) to ρ(s2). Then the concatenation ρ̃ = ρ1 ∗ µ ∗ ρ2 has the property that

J(ρ̃) ≤ J(ρ).

Proof. Since there are no obstacles, the point ρ(s2) is reachable from ρ(s1) via a

straight line. Finally, straight line paths in a constant flow environment are time-

optimal, so by replacing the middle section of ρ with a straight line segment in ρ̃,

we have decreased the travel time along ρ̃ compared to ρ.

By replacing a section of a trajectory with a straight line path, the time to

traverse that path is shortened, see Figure 5.10 for a graphical interpretation.

99

ρ1
µ

ρ2

Figure 5.10: A graphical interpretation of Lemma 35. The original path ρ is the
concatenation of ρ1, the dashed path, and ρ2. Replacing the dashed path with µ
(straight line) results in a path that takes less time to traverse.

Next, we consider the situation when an optimal trajectory intersects an

obstacle (or flow environment boundary). We present a definition of convexity

with respect to the flow environment.

Definition 13. Let ζ be a parametrized curve in the flow environment. Then,

ζ is locally convex at ζ(s̄) relative to the flow domain X if there exists a δ >

0 such that for all s ∈ (s̄ − δ, s̄ + δ), s 6= s̄, and for all t ∈ [0, 1], we have

ζ(s̄) + t(ζ(s)− ζ(s̄)) ∈ X. Similarly, ζ is locally concave at ζ(s̄) relative to X if

for t ∈ (0, 1), ζ(s̄) + t(ζ(s)− ζ(s̄)) /∈ X.

The convex (resp. concave) curve ζ is strictly convex (resp. strictly con-

cave) if for all t ∈ (0, 1), ζ(s̄) + t(ζ(s)− ζ(s̄)) 6= ζ(s̃) for some s̃ ∈ (s̄− δ, s̄+ δ).

Figure 5.11 offers a graphical depiction of the above definition. With these

definitions we can state the following result regarding non-simple paths.

Figure 5.11: Diagram illulstrating convexity relative to the flow environment. At
left, an example of a locally strictly convex boundary with a dashed tangent line.
At right is a locally strictly concave curve with a dashed tangent line.

Theorem 36. Let ζ be a parametrization of the boundary of an obstacle. If ζ

is locally strictly concave at the point ζ(s), then time-optimal trajectories that are

tangent at ζ(s) may result in non-simple paths. These paths are formed by following

the boundary ζ and then tangentially leaving as a straight line path into the interior

of X.

100

Proof. Let ρ be a time-optimal trajectory originating from p0 that is tangent to ζ

at ζ(s). We note that if a time-optimal trajectory intersects ζ transversely, then

that trajectory must stop. First we show that ζ must be locally concave about the

intersection point ζ(s) in order to admit non-simple paths. Then for the case that

ζ is locally concave at ζ(s), we will construct non-simple (optimal) paths.

Suppose that ζ is locally strictly convex at ζ(s) and that ρ is tangent to ζ

at ζ(s). The time-optimal trajectory ρ must be feasible, thus it must remain in X

at all times. For ρ to continue past ζ(s), it must continue to follow the curve ζ or

return into the interior of the flow region. Following the boundary is not optimal

since ζ is locally convex, so there exists a neighborhood N about ζ(s) such that

there is a straight line path joining ζ(s) to another point along ζ through the

interior of X that also lies in N , see Figure 5.12. If ζ is locally convex but not

strictly convex about ζ(s), then ζ is a straight line through ζ(s). Thus, straight

line trajectories may continue, and ρ remains a simple trajectory.

ζ(s)

Figure 5.12: Convex boundary counterexample. The thick dashed path that
follows the boundary of the obstacle is not time-optimal since there exists a straight
line path from ζ(s) to any point along the convex boundary.

For the case that ζ is locally strictly concave at ζ(s), then the boundary

of the obstacle occludes a portion of the flow domain X . Non-simple trajectories

may result after this tangential intersection if it is feasible to steer along the path

ζ under the constant flow. Let N be a small neighborhood about the tangential

intersection point ζ(s). We first show that a trajectory that follows the boundary

ζ is time-optimal. Then we combine this with the fact that within the interior of

X , time-optimal paths must be straight lines in order to complete the construction

of these optimal non-simple trajectories.

Consider a trajectory ρ that connects ζ(s1) to ζ(s2) on the boundary of

a locally strictly concave curve ζ . Suppose ρ follows the boundary ζ , but is not

time-optimal. Then there exists a trajectory ρ∗ connecting ζ(s1) and ζ(s2) with

101

a shorter travel time. Furthermore, ρ∗ must leave the boundary ζ at some point

and then re-enter it in order to finish at ζ(s2). However, since ζ is locally strictly

concave, such a maneuver requires a course change within the interior of the flow

region, which implies that ρ∗ is not time-optimal, see Figure 5.13.

ζ(s1)

ζ(s2)

Figure 5.13: A diagram demonstrating optimality of a path the follows the bound-
ary of an obstacle. Since ζ is locally strictly concave, any other path connecting
ζ(s1) to ζ(s2) must undergo a path change within the interior of a flow region (i.e.
the dotted line). This violates the optimality condition that straight-line paths
within the interior of a flow region are time-optimal.

At any point along the boundary, the time-optimal trajectory ρ may de-

part tangentially. This continuation of the time-optimal path satisfies Bellman’s

necessary principle for optimality. Furthermore, it is the only path that does so.

Suppose that at some point ζ(s∗) ∈ N , s∗ > s, the departing trajectory is not

tangential. Then it either transversely crosses ζ , which is not feasible, or it exits

back into the flow domain X . Let µ be this non-tangential line. Since ζ is locally

concave in N , for some small ǫ > 0, there is a straight line path from an earlier

point along the boundary, ζ(s∗ − ǫ) that necessarily intersects this non-tangential

departing line, see Figure 5.14. By Lemma 35, the tangentially departing path

results in a faster arrival time to the intersection point.

ζ(s)ζ(s) ζ(s∗)

ζ(s∗ − ǫ)

Figure 5.14: Cartoon for the proof of 36. At left, an example of a non-simple
(time-optimal) path around an obstacle. At right, we provide a counterexample
showing that a tangentially departing path is optimal.

102

p0 S(p0)

U(p0)

Figure 5.15: Illustrations of scenarios where the simply-reachable set is not equal
to the entire reachable set. At left, the simply-reachable set S(p0) is denoted by
the light gray region, and the simply-unreachable set is denoted by the dark gray
region U(p0). Optimal trajectories to reach points in U(p0) start from p0 and follow
the black dashed line to ∂U(p0), then are straight line paths from the corner to any
point inside U(p0). At right, the solid region denotes S(p0). Optimal trajectories
to reach points inside U(p0) must pass through the corner of the flow interface.

Remark 37. Cases where ∂X is not smooth can be seen as a limiting case of

Theorem 36. Similarly, nonsmooth points along ∂Xk \∂X can be seen as a limiting

case of Proposition 32. Both scenarios are illustrated in Figure 5.15. •

Definition 14. We define a course change to be either a discontinuous change

in heading as described in (5.11) or the sequence of navigating around an obstacle

described in Theorem 36.

5.4.2 Intersecting trajectories

It could happen that multiple simple or non-simple trajectories intersect.

This may occur in two possible ways. The first instance involves trajectories that

intersect at the same time, and the second instance involves trajectories that in-

tersect at different times. It is important to note that in both cases, the individual

trajectories are optimal up until the point where they intersect. Then, a decision

must be made to determine which trajectory (if any) to continue based on travel

time.

Such scenarios highlight the fact that the Pontryagin minimum principle

along with the Bellman principle of optimality are necessary conditions. Thus,

while a particular trajectory ρ1(t) originating from p0 and passing through x ∈ X
may satisfy Proposition 32 and Theorem 36, it does not imply that ρ1(t) is the

103

Figure 5.16: An illustration of a scenario where simple trajectories (solid paths)
intersect each other.

only trajectory satisfying those results that passes through x.

Proposition 38. Let ρ1(t) and ρ2(t) be two distinct trajectories originating from

p0. Furthermore, let ρ1(t) and ρ2(t) satisfy Proposition 32 and Theorem 36. Sup-

pose that there exist t1 > 0 and t2 > 0 such that ρ1(t1) = ρ2(t2). Then,

1. if (without loss of generality) t1 < t2, then ρ1(t) can be considered as the

optimal trajectory to reach points in ρ1(t) for all t > 0, while ρ2(t) is restricted

to be optimal for points in ρ2(t) reachable for t ∈ [0, t2).

2. if t1 = t2, then the optimality of both trajectories is restricted to only points

in ρ1(t), ρ2(t) for t ∈ [0, t1].

Proof. Suppose that ρ1 and ρ2 do not intersect any other trajectory originating

from p0. Then, since ρ1 and ρ2 are the only trajectories satisfying the necessary

conditions for optimality, they must be optimal at least up to times t1 and t2,

respectively.

Consider the case ρ1(t1) = ρ2(t2) , x and t1 < t2. Clearly ρ2 is not the

time-optimal path to reach x. For ρ2, optimality is only true for points ρ(t) with

0 < t < t2, while the optimality of ρ1 can be used to optimally reach any point in

ρ1(t), for any t.

Suppose instead that ρ1(t1) = ρ2(t2) , x, with t1 = t2 and x inside the

interior of a region Xk. Suppose that ρ1 continues to be the time-optimal path to

go from p0 to y = ρ1(t) for t > t1. Then the trajectory composed of ρ2(t) until

x and ρ1(t) until y would also be time-optimal (it takes the same time to reach y

104

from p0). This is a contradiction with the fact that inside the region Xk, optimal

trajectories must be straight lines.

The first case of Proposition 38 involves simple trajectories that intersect

at different times. This can occur with flow around an obstacle as in Figure 5.17.

It may be that flow on one side of the obstacle is faster or shorter. Then it is

possible for a trajectory that takes the faster path to intersect a trajectory that

travels the slower path. Intersecting trajectories can also occur when an agent

travels along a flow interface as in Figure 5.18. Upon crossing a flow interface, the

new course change may result in an agent that travels along the interface. Then,

some trajectories are blocked by the trajectory flowing along the interface.

p0

Figure 5.17: Example of one path flowing around an obstacle faster than the
other. The dashed path must terminate upon intersecting the solid path.

p0

Figure 5.18: Example of trajectories terminating at a flow interface. Any simple
trajectory starting from p0 traversing through the shaded region must terminate
at the flow interface (dotted line). There is one simple trajectory (thick line) that
flows along the interface after switching into the lower region. The T -reachable set
RT (p0) is outlined.

The second case of Proposition 38 introduces the case of simple trajectories

intersecting at the same time. This may occur when there is a flow interface that

is convex relative to the incoming flow as in Figure 5.16.

105

5.4.3 Trajectories along flow interfaces

The flow case shown in Figure 5.18 motivates additional study of trajectories

that flow along the interface of two constant regions. Application of (5.11) can

result in a trajectory that travels along the boundary between two different flows.

Use of the same result can also give a way to compute a heading back into the first

region. This leads to trajectories as in Figure 5.19.

p0
x

Figure 5.19: Trajectories along flow interfaces. In certain scenarios, it may be
faster to follow the solid line path to reach x rather than the simple trajectory
(dotted line). This is due to the faster flow velocity in the bottom region.

We now show that the existence of an initial heading θ− that results in an

outgoing trajectory that is tangent with the flow interface. For simplicity, suppose

we have a two-region flow with parameters:

α1 = α2 = 0; 1 < ‖V−‖ < ‖V+‖; ξ =
π

2
.

This corresponds to the cartoon shown in Figure 5.19. We seek a solution to θ−

in (5.11) that results in θ+ = 0. This implies that the trajectory after switching

moves along the flow interface.

1 + ‖V−‖ cos θ−
− cos θ−

=
1 + ‖V+‖
−1

1 + ‖V−‖ cos θ− = cos θ− + ‖V+‖ cos θ−

cos θ− =
1

1 + ‖V+‖ − ‖V−‖
.

Note here that the assumption that ‖V+‖ > ‖V−‖ is important in order to have a

well-defined solution.

Now we wish to solve the subsequent problem. Once we are flowing along

the boundary in the faster flow region, what is the optimal heading change back

106

into the slower region?

α1 = α2 = 0; 1 < ‖V+‖ < ‖V−‖; ξ =
π

2
.

We set θ− = 0 and solve for θ+.

1 + ‖V−‖
−1 =

1 + ‖V+‖ cos θ+
− cos θ+

cos θ+ + ‖V−‖ cos θ+ = 1 + ‖V+‖ cos θ+

cos θ+ =
1

1 + ‖V−‖ − ‖V+‖
.

Again, since ‖V−‖ > ‖V+‖ the solution for θ+ is well-defined.

If instead we had ‖V−‖ > ‖V+‖, then flow along the boundary results only

if 1 + ‖V+‖ − ‖V−‖ ≤ −1. This implies that ‖V−‖ ≥ ‖V+‖ + 2. We also know

that the feasible range of optimal initial headings is θ− ∈ [−β1 − π
2
, β1 +

π
2
] where

β1 = arcsin(1
‖V−‖). Letting θ− = β1 +

π
2
and taking cos of both sides gives:

cos

[

arcsin

(
1

‖V−‖

)

+
π

2

]

= cos

(

arcsin
1

‖V−‖

)

cos
π

2
− sin

(

arcsin
1

‖V−‖

)

sin
π

2

= − 1

‖V−‖
.

The same quantity results if we consider θ1 = −β1 − π
2
. Thus far, we have:

cos θ− =
1

1 + ‖V+‖ − ‖V−‖
, cos(β1 +

π

2
) = − 1

‖V−‖
.

Since ‖V−‖ > ‖V+‖, 1 + ‖V+‖ − ‖V−‖ ≤ −1, and ‖V−‖, ‖V+‖ > 1, we can say that

1

1 + ‖V+‖ − ‖V−‖
< − 1

‖V−‖
.

This implies that cos θ− < cos
(
β1 +

π
2

)
since for the example we are considering,

θ− and β1 +
π
2
are in the second or third quadrants. This implies that for any

choice of ‖V−‖ > ‖V+‖, the resulting initial heading that gives θ+ = 0 is not a

feasible initial optimal heading, and time-optimal motion along the boundary after

switching is not possible.

Although we have considered a simple example for how a trajectory can

flow along a boundary, this may happen for other choices of α1, α2. When an

107

agent is moving along a flow boundary, and it is possible to switch back into the

first region, the agent may choose to switch back at any time, making this process

indeterminate. However, the result above dictates that there is only one possible

outgoing heading back into the first flow region. Furthermore, it is possible for

these trajectories that flow along boundaries and later return to intersect other

trajectories that remained in the original flow region. See Figure 5.20 for an

example of this. The treatment of these intersecting trajectories has been discussed

in the previous subsection.

For completeness, the following result summarizes the above analysis for

general flow parameters.

Proposition 39. Assume two flow regions defined by the parameters ‖V−‖, α1 and

‖V+‖, α2, respectively, separated by an interface whose normal angle is ξ. If it is

possible for an agent to flow along the boundary under the second flow, then θ+

satisfies

θ+ ∈
{

ξ ± arccos [−‖V+‖ sin(α2 + ξ)] ,−ξ ± arccos [‖V+‖ sin(α2 + ξ)]
}

. (5.13)

Let

D =
1 + ‖V+‖ cos(θ+ − α2)

sin(θ+ − ξ)
.

Then, the incoming heading resulting in flow along the boundary, if it exists, sat-

isfies

θ− = arctan

[‖V−‖ sinα1 −D cos ξ

‖V−‖ cosα1 +D sin ξ

]

± arccos

(

−1
√

(‖V−‖ sinα1 −D cos ξ)2 + (D sin ξ + ‖V−‖ cosα1)2

)

. (5.14)

Proof. We begin by stating the useful identity

a cos θ + b sin θ =
√
a2 + b2 cos(θ − φ) ,

φ = arctan

(
b

a

)

.

Given that the outgoing trajectory flows along the flow interface, we have the

following condition

tan
(

ξ ± π

2

)

=
sin
(
ξ ± π

2

)

cos
(
ξ ± π

2

) =
sin θ+ + ‖V+‖ sinα2

cos θ+ + ‖V+‖ cosα2

.

108

The left hand side denotes the tangent direction at the interface crossing while

the right hand side denotes the resultant velocity of an agent. We now solve for

the outgoing vehicle heading θ+. Throughout we note that we keep track of the

plus/minus signs so that they remain consistent.

± cos ξ

∓ sin ξ
=

sin θ+ + ‖V+‖ sinα2

cos θ+ + ‖V+‖ cosα2

± cos ξ cos θ+ ± ‖V+‖ cosα2 cos ξ = ∓ sin ξ sin θ+ ∓ ‖V2‖ sinα2 sin ξ

cos ξ cos θ+ ± sin ξ sin θ+ = ∓‖V+‖ sin (α2 + ξ)

At this point, we apply the trigonometric identity for addition of sin and cos.

cos

[

θ+ − arctan

(± sin ξ

± cos ξ

)]

= ∓‖V+‖ sin (α2 + ξ)

cos(θ+ ∓ ξ) = ∓‖V2‖ sin (α2 + ξ)

At this point we take the inverse cosine of both sides. However, due to the mul-

tiplicity of solutions for arccos, we will again have two possible solutions. Before

proceeding with arccos, we split the two existing solutions we already have to

obtain–in the end–four total possible solutions.







θ+ − ξ = ± arccos[−‖V+‖ sin(α2 + ξ)] ,

θ+ + ξ = ± arccos[‖V+‖ sin(α2 + ξ)] ,






θ+ = ξ ± arccos[−‖V+‖ sin(α2 + ξ)] ,

θ+ = xi± arccos[‖V+‖ sin(α2 + ξ)] .

Thus, we have achieved the first result of this proposition.

Now we assume that θ+ is known and satisfies the first result. We wish to

solve for the incoming heading θ− that achieves an outgoing heading of θ+. To

simplify some clutter, we let

D =
1 + ‖V+‖ cos(θ+ − α2)

sin(θ+ − ξ)
.

109

Figure 5.20: Example of trajectories that move along a flow interface and return
into the original flow region and its effect on the reachable set of an agent. Notice
that some of the returning trajectories intersect simple trajectories and result in
termination based on travel time.

Now we solve for θ−:

1 + ‖V−‖ cos(θ− − α1)

sin(θ− + ξ)
= D

1 + ‖V−‖(cos θ− cosα1 + sin θ− sinα1) = D(sin θ− cos ξ − cos θ− sin ξ)

(‖V− cosα1 +D sin ξ) cos θ− + (‖V−‖ sinα1 −D cos ξ) sin θ− = −1

We apply the trigonometric identity for addition of sin and cos.

√

(‖V−‖ cosα1 +D sin ξ)2 + (‖V−‖ sinα1 −D cos ξ)2

· cos
(

θ− − arctan

[‖V−‖ sinα1 −D cos ξ

‖V−‖ cosα1 +D sin ξ

])

= −1 .

Applying arccos with multiplicity of solutions in mind and solving for θ− gives the

final result of this proposition.

5.4.4 Flow along a general boundary

In the previous subsection, we demonstrated the existence of optimal paths

that flow along the interface between different flow regions. We motivate the

following discussion with Figure 5.21, where a slower flow is surrounded by a fast

flow. In this scenario, it may be faster to avoid entering the slower flow region

in order to reach points on the other side. In this case, the slower region may

110

be treated as an obstacle in the flow, and a candidate trajectory may be formed

using previous techniques. Then, apply the result of Proposition 38 to resolve the

conflict of multiple trajectories meeting at the same point.

x

Figure 5.21: Flow along a general boundary. An example situation where it may
be faster to follow the solid path than the dotted path. This is because the flow is
much faster outside of the circular region.

5.4.5 Nested non-simple trajectories

In the previous subsections, we described scenarios where either the reach-

able set is larger than the set of all simple trajectories or where simple trajectories

intersect. In the case where there is a set U(p0) that is unreachable by simple tra-

jectories as in Figure 5.15, it is possible to have nested non-simply reachable sets.

This occurs as in Figure 5.22. For such scenarios, self-similarity provides a solution

for an optimal path from p0 to a point within a nested non-simply reachable set.

For example, in Figure 5.22, we can view the problem of reaching a point

in the region U2(p0) in minimum time as a minimum time problem starting from

the point x∗1. By repeatedly applying the result from the previous subsection an

optimal path from p0 to a point in U2(p0) can be obtained. By the principle of

optimality, this path is correct since all subpaths are optimal trajectories.

5.5 Area coverage

In this section we present coverage algorithms that aim to maximize the

area coverage metric of (5.4). The algorithms are distributed over the reachable

set graph Greach.

111

p0 S(p0)

U1(p0)
U2(p0)

x∗1

x∗2

Figure 5.22: A scenario where there is a nested non-simply-reachable set U2(p0)
(dark gray) that cannot be reached by a simple trajectory from the corner marked
x∗1. The simply-reachable set is denoted by the light gray region, and the non-
simply-reachable set U1(p0) is shown as the medium-gray region. Together, U(p0) =
U1(p0) ∪ U2(p0).

5.5.1 Gradient of the area objective function

Since the goal is to maximize H, we begin by taking the gradient of H with

respect to p(i) in order to obtain a set directions each agent must travel in.

Proposition 40. Given the area objective (5.4), let

A(i) = ∂RT (p
(i)) ∩






⋃

j∈N
(i)
flow

RT (p
(j))






c

∩X , (5.15)

the set of points in ∂RT (p
(i)) not in the interior of neighboring reachable sets.

Then the gradient with respect to p(i) is:

∂H
∂p(i)

=

∫

A(i)

n̂T

out(ζ
(i))

∂ζ (i)

∂p(i)
dζ (i) , (5.16)

where ζ (i) : S → R2 is a parametrization of ∂RT (p
(i)), and n̂out : R

2 → R2 is the

unit outward-pointing normal vector at ζ (i).

Proof. We utilize a conservation of mass result found in the fluid mechanics liter-

ature, and detailed also in [15, 24], to compute this derivative. According to [15],

the integrand, 1, must be continuous, and the region
⋃RT (p

(i)) must be a union

of star-shaped sets. Both these criteria are satisfied, so the derivative of H with

respect to p(i) is

∂H
∂p(i)

=

∫

⋃
RT (p(i))

∂

∂p(i)
[1]dq +

∫

∂(
⋃

RT (p(i)))
n̂T

out(ζ)
∂ζ

∂p(i)
dζ ,

112

where ζ is a parametrization of ∂
(⋃RT (p

(i))
)
.

Based on Theorem 30, since there are no holes in RT (p
(i)), the boundary

∂
(⋃RT (p

(i))
)
is only composed of curves from the following: solutions γ(i)(t,−1),

γ(i)(t, 1), γ(i)(T,K), and sections of ∂X for i ∈ {1, . . . , n}. Note that any point

along those solutions is only a function of the initial position p(i), and not any other

agent’s initial position. For this reason, we conclude that ∂ζ
∂p(i)

= 0 if ζ /∈ RT (p
(i)).

Let A(i) = ∂RT (p
(i)) ∩ ∂

(
⋃N
j=1RT (p

(j))
)

∩ X . Then, A(i) is the set of

points along ∂RT (p
(i)) that is not in the interior of

⋃N
j=1RT (p

(j)). The integral

expression above then simplifies to

∂H
∂p(i)

=

∫

A(i)

n̂T

out(ζ)
∂ζ

∂p(i)
dζ .

Instead of using the parametrization for the entire boundary of
⋃N
i=1RT (p

(i)), we

can just use a parametrization for the boundary ∂RT (p
(i)). Let ζ (i) be one such

parametrization. Then, we obtain the result (6.14).

The general strategy now is to follow the gradient direction in order to

maximize coverage area. We begin by examining the time-evolution of the objective

function H.

Proposition 41. The rate of area increase is locally maximized if each agent

utilizes the control law

u(i) =

∂H
∂p(i)
∥
∥
∥
∂H
∂p(i)

∥
∥
∥

. (5.17)

Proof. We consider the time evolution of the cost function by applying the chain

rule:

Ḣ =

N∑

i=1

∂H
∂p(i)

ṗ(i) =

N∑

i=1

∂H
∂p(i)

(
u(i) + V

)
.

Each agent’s contribution to the rate of change ofH is then given by ∂H
∂p(i)

(u(i)+V) =

∂H
∂p(i)

u(i) + ∂H
∂p(i)

V . However, there is the constraint that ‖u(i)‖ ≤ 1. The choice of

u(i) that maximizes each individual term of the sum is the vector that points in

the same direction as ∂H
∂p(i)

, but with magnitude 1.

113

Remark 42. Depending on the direction of the gradient ∂H
∂p(i)

, an individual agent

may not be able to maximize its own area covered. This is because ‖u(i)‖ < ‖V ‖,
so it cannot be guaranteed that each quantity in the sum can be positive due

to the term ∂H
∂p(i)

V . Nevertheless, we can still choose u(i) such that the quantity

∂H
∂p(i)

(u(i) + V) is maximized for all i. •

5.5.2 Affine flow cases

In general the gradient is difficult to analytically compute due to the ∂ζ(i)

∂p(i)

term inside the integral. This term is a 2× 2 matrix that represents the variation

of a point along ∂RT (p
(i)) as the agent position p(i) varies. An analytical result

would require an explicit solution to (5.1) using (5.7). However, there are certain

cases where such a solution is possible.

Proposition 43. If the flow field is of the form (5.8), then

∂ζ (i)

∂p(i)
= eAτ(p

(i),ζ(i)) . (5.18)

Proof. For this particular flow, the time-optimal trajectories are given by (5.10).

Taking the gradient of p(i)(t) with respect to initial position p(i)(0) results in

∂p(i)(t)

∂p(i)(0)
= eAt .

To connect the above gradient back to the problem of finding ∂ζ(i)

∂p(i)
, recall that

ζ (i) is a parametrization of ∂RT (p
(i)). Thus points along ζ (i) are solutions of the

optimal control problem at a particular (fixed) time. The result (5.18) follows

immediately.

5.5.3 Constant flows

We can further analyze the algorithms proposed above for the special case

of a single constant flow field. For a constant flow, A = 0 in (5.18) and the gradient

according to (6.14) becomes

∂H
∂p(i)

=

∫

A(i)

n̂T

out(ζ
(i))dζ (i) . (5.19)

114

The result of (5.19) has an intuitive interpretation. In order to maximize area

covered, agents move towards locations that are not occupied by other agents’

reachable sets.

Lemma 44. For a constant flow field, V = c, if no regions intersect the boundaries

∂X, then H is non-decreasing if agents use the control law (5.17).

Proof. To show this, we will prove that

N∑

i=1

∫

A(i)

n̂T

out(ζ
(i))dζ (i) = 0 ,

using the divergence theorem in 2 dimensions:
∫

D

(∇ · F)dq =
∫

∂D

(F · n̂out)ds ,

where D ⊂ R2 is compact and F : D → R2 is continuously differentiable. If F = 1,

then 0 =
∫

∂D n̂out ds.

From the definition of A(i) (5.15), since no regions intersect the flow bound-

ary,

A(i) = ∂RT (p
(i)) ∩ ∂

(
N⋃

j=1

RT (p
(j))

)

.

Then, note that each A(i) is disjoint except at the isolated points where two regions

RT (p
(i)) and RT (p

(j)) meet. Furthermore, ∂
(
⋃N
i=1RT (p

(i))
)

=
⋃N
i=1A(i).

Since
⋃N
i=1RT (p

(i)) is compact, then the divergence theorem states that:

0 =
∫

∂(
⋃N
i=1 RT (p(i))) n̂out ds =

∫

∂(
⋃N
i=1 A

(i)) n̂out ds =
∑N

i=1

∫

A(i) n̂outds. In other

words,
∑N

i=1
∂H
∂p(i)

= 0.

Revisiting the time evolution of H, we have

Ḣ =
N∑

i=1

∂H
∂p(i)

(u(i) + c) =
∂H
∂p(i)

u(i) +
∂H
∂p(i)

c =
N∑

i=1

∥
∥
∥
∥

∂H
∂p(i)

∥
∥
∥
∥
+

∂H
∂p(i)

c .

Since c is a constant, the second term in the summation is zero. Thus, Ḣ =
∑N

i=1

∥
∥
∥
∂H
∂p(i)

∥
∥
∥ ≥ 0.

Lemma 45. For constant flows, if the flow boundaries are parallel with the flow

direction and X is unbounded (the flow domain is an infinitely long strip), then H
is maximized by (5.17).

115

Proof. Let u(i) = 0 for all i ∈ {1, . . . , n}. Then Ḣ =
∑N

i=1
∂H
∂p(i)

c. Suppose an agent

i has a region that intersects the boundary of X . Since u(i) = 0, agent i drifts

parallel to the shore. Furthermore, other agents drift at the same rate. Thus, all

agents maintain their relative positions and so total area remains constant. Thus
∑N

i=1
∂H
∂p(i)

c = 0. Now, for u(i) as in (5.17), Ḣ =
∑N

i=1

∥
∥
∥
∂H
∂p(i)

∥
∥
∥ ≥ 0.

5.5.4 Piecewise constant flows

The gradient expression forH with respect to agent positions p(i) is identical

to the result for affine flows in (6.14); the main difference lies in the term ∂ζ(i)

∂p(i)
.

First we present a result dealing with simple trajectories, and then modify it to

include non-simple trajectories.

We seek a formula for the position of a trajectory at terminal time T with

an initial heading θ0 at t = 0, and passing through a total of q + 1 flow regions.

Thus, there will be q optimal course changes. Once the initial heading θ0 is chosen,

the sequence of optimal headings to follow, {θ1, . . . , θq}, within each region can be

solved.

Points on the boundary ∂A(i) can be viewed as endpoints of simple trajec-

tories starting at p0. Suppose that a simple trajectory passes through a total of

q + 1 flow regions. Then, the final position at time T is given by

pT = x̄q + (T − t̄q)ṗq . (5.20)

From (5.20) given some arbitrary initial heading, we compute ∂ζ(i)

∂p(i)
with the fol-

lowing results.

Proposition 46. Let x̄0 = p0 and

Dℓ =

(
∂x̄ℓ
∂x̄ℓ−1

)(
∂x̄ℓ−1

∂x̄ℓ−2

)

· · ·
(
∂x̄1
∂x̄0

)

.

Then the derivative of (5.20), the endpoint of a simple trajectory, with respect to

initial position p0 is

∂pT
∂p0

= Dq − ṗq
q
∑

ℓ=1

∂t̄ℓ
∂x̄ℓ−1

Dℓ−1 . (5.21)

116

Proof. We can take the result (5.20) and take the derivative with respect to ini-

tial position p0 by applying the chain rule. Before launching into the computa-

tion, we make a couple observations. The sequence of interface crossing positions

{x̄1, . . . , x̄q} depends only on the initial heading choice θ0. In fact, each interface

crossing position x̄ℓ depends only on the previous interface crossing x̄ℓ−1 and the

(fixed) choice of direction θℓ−1 determined by (5.11). On the other hand, we can

express the interface crossing time t̄ℓ as

t̄ℓ = t̄ℓ−1 +
‖x̄ℓ − x̄ℓ−1‖
‖ṗℓ−1‖

.

Thus, t̄ℓ depends on both the previous interface crossing time and the previous

crossing position.

Applying the chain rule to (5.20), we have

∂pT
∂p0

=
∂x̄q
∂p0
− ṗq

∂t̄q
∂p0

=
∂x̄q
∂x̄q−1

∂x̄q−1

∂p0
− ṗq

[
∂t̄q
∂x̄q−1

∂x̄q−1

∂p0
+

∂t̄q
∂t̄q−1

∂t̄q−1

∂p0

]

.

Note that
∂x̄q
∂x̄0

=

(
∂x̄q
∂x̄q−1

)(
∂x̄q−1

∂x̄q−2

)

· · ·
(
∂x̄1
∂x̄0

)

, Dq .

Then,

∂pT
∂p0

= Dq − ṗq
[
∂t̄q
∂x̄q−1

Dq−1 +
∂t̄q−1

∂p0

]

.

Repeated application of the chain rule on the last term gives the result.

We now detail how to compute each term in (5.21).

Proposition 47. Let an interface crossing position and time be x̄ and t̄, and

suppose that there is only one such crossing and that the interface is differentiable

at x̄. Let η = (cos ξ, sin ξ)T be the unit normal vector to the interface at x̄. Then,

for a fixed choice of heading ṗ, the Jacobian of the crossing position with respect

to change in initial position is given by

∂x̄

∂p0
= I2 −

(
ṗηT
)

ṗTη
, (5.22)

117

where I2 is the identity matrix of dimension 2. The Jacobian of the crossing time

with respect to change in initial position is given by

∂t̄

∂p0
= − ηT

ṗTη
. (5.23)

Proof. Suppose there is a parametrization ζ : R → R2 of the curve described by

ψ(x) = 0. Let ζ(0) correspond to the interface crossing position x̄. We wish to find

the variation of the crossing position x̄ with respect to a change in initial position

p0. For example, in Figure 5.23, for a horizontal displacement δx, we wish to find

lim
‖δx‖→0

ζ(t̃)− ζ(0)
‖δx‖ , (5.24)

where ζ(t̃) is the point along the curve ζ that intersects the displaced trajectory.

We also wish to find a similar quantity for vertical displacements δy.

ζ(0)

ζ(t̃)

x̃

δx
p0 p0 + δx

Figure 5.23: Diagram for the proof of Proposition 47.

Since x̄ is constrained to lie on the curve ζ(t), the derivatives of x̄ with

respect to the horizontal and vertical variations in initial position must lie along

the tangent direction ζ ′(0). One can show that computing

lim
‖δx‖→0

x̃− ζ(0)
‖δx‖ , (5.25)

where x̃ is the point along the tangent line from ζ(0) that intersects the displaced

trajectory, is equivalent to computing (5.24) as ‖δx‖ → 0. The limit (5.25) is much

easier to compute since x̃ can be solved for explicitly.

In other words, we use the linear approximation of ζ(t) about ζ(0) = x̄ to

compute the Jacobian ∂x̄
∂p0

at the point x̄. Let η be the unit normal vector to ζ at

118

ζ(0). Then, given a constant velocity ṗ, the intersection point x̃ of a trajectory

starting from p0 to the tangent line through ζ(0) is given by

x̃ = p0 +
(ζ(0)− p0)Tη

ṗTη
ṗ .

The quotient of inner products represents the travel time from p0 to the tangent

line, since the inner products project the travel distance and travel velocity onto

the normal direction. Expanding p0, ṗ, and η into components and differentiating

with respect to horizontal and vertical changes of p0 yields the final result of (5.22).

In performing the above differentiation, we also differentiate the crossing time with

respect to initial position to get (5.23).

For non-simple trajectories, the expression for the derivative of the endpoint

with respect to the initial position still follows from (5.21) by treating non-simple

course changes as one of the x̄ℓ in (5.21). However, the expressions (5.22) and (5.23)

do not apply for course changes around obstacles or through flow interfaces that

are not differentiable. We present the following result to address these cases.

Proposition 48. Let pT be the endpoint of a non-simple trajectory that undergoes

q course changes. Let ℓ∗ ∈ {1, . . . , q} denote the first non-simple course change

described in Theorem 36 or the Remark 37. Then, the Jacobian of the endpoint

position with respect to initial position is

∂pT
∂p0

= −ṗq
ℓ∗∑

ℓ=1

∂t̄ℓ
∂x̄ℓ−1

Dℓ−1 , (5.26)

with
∂t̄ℓ∗

∂x̄ℓ∗−1

=
1

‖ṗℓ∗−1‖
(x̄ℓ∗−1 − x̄ℓ∗)T
‖x̄ℓ∗ − x̄ℓ∗−1‖

(5.27)

Proof. We assume a non-simple trajectory such as that described in Theorem 36.

Then, there is a specific point x∗ = x̄ℓ∗ that a trajectory originating from p0 must

pass through to reach points in U(p0). This point is fixed in space, so the quantity
∂x̄ℓ∗
∂p0

= 0. Thus, the expression for the Jacobian (5.21) becomes (5.26).

The remaining task is to compute the special term ∂t̄ℓ∗
∂x̄ℓ∗−1

corresponding to

the special crossing point x̄ℓ∗ . For ℓ < ℓ∗, the derivative is given by (5.23). We

119

begin with

t̄ℓ∗ = t̄ℓ∗−1 +
‖x̄ℓ∗ − x̄ℓ∗−1‖
‖ṗℓ∗−1‖

.

Then, differentiating with respect to the previous crossing location x̄ℓ∗−1, we obtain

the result (5.27).

Remark 49. The only impediment of considering piecewise affine flows as opposed

to piecewise continuous flows comes from the necessity of analytically computing

the term ∂t̄
∂x̄
. An expression for t̄ℓ in terms of t̄ℓ−1, x̄ℓ, and x̄ℓ−1 as in the proofs of

Propositions 46 and 48 cannot be easily stated. •

5.6 Simulations

The following simulation portrays a typical execution of the area coverage

algorithm for the set of special flow cases described in Sections 5.2-5.2.3. Here, 8

agents deploy in a flow environment of length 100m and width 50m. We demon-

strate a case with flow parameters a11 = 0.025s−1, b1 = 1m/s, a22 = −0.1s−1, and

b2 = 0. The simulation results are shown in Figure 5.24.

Next, we present a simulation result for a piecewise constant flow scenario.

The flow environment that we choose features a slower, wide flow that becomes

narrower and faster. The initial flow velocity has is 1.75m/s to the right, and the

final flow velocity is 3.5m/s to the right. We wish to maximize area covered using

8 agents with maximum speed of 1m/s and a limited-time range of 2s.

Figure 5.25 displays snapshots of the agents as they deploy and flow across

the environment. We note that the algorithm does not monotonically maximize

area coverage due to the varying flow environment. Figure 5.26 displays the objec-

tive function (5.4) for the simulation. The gradient ascent achieves maximization

of coverage area when all agents are in the same flow region. This corresponds to

t = 21s in the simulation, as all agents are in the final flow region. In other words,

the agents minimize the rate of area loss.

In the next simulation, we demonstrate a piecewise constant flow domain

with an obstacle. The flow environment features three parallel strips with the

middle strip having a faster flow. Additionally, the obstacle is located in the middle

120

0
0 30

800

t

H

Figure 5.24: Different snapshots of the area deployment algorithm in an affine
flow for 8 agents. Times for the three snapshots are first t = 0s, second t = 5s,
and third t = 26s. Afterward, the agents leave the flow environment. A plot of
the objective function is shown in the bottom graph (solid line) and a plot of the
objective function for u(i) = 0 for all i is shown in the dashed line for comparison.

121

Figure 5.25: Deployment in a piecewise constant flow environment by 8 agents.
Simulation times are t = 0s (top), t = 10s (middle), and t = 20s (bottom).

flow region. Figure 5.27 gives three four snapshots of the coverage maximization

as time progresses. The agents successfully navigate around the obstacle and move

away from each other in order to maximize area covered. Figure 5.28 provides a

plot of the total area covered as a function of time.

122

H

t (sec)
0 20 40

180

Figure 5.26: Coverage area plot of the simulation in Figure 5.25. Agents begin
to enter the final flow region after t = 10s. Then, once all agents are in the final
flow region, the area is maximized after t = 20s.

123

Figure 5.27: Deployment in a flow environment with an island obstacle by 8
agents. The flow is also faster in the middle strip than in the regions close to the
top and bottom boundaries. Simulation times from top to bottom are: t = 0s,
t = 10s, t = 20s, and t = 40s.

H

t (sec)
0 10 20 40

100

150

Figure 5.28: Coverage area plot of the simulation in Figure 5.27.

Chapter 6

Distributed Deterministic

Annealing

Most current methods for deployment, i.e. [15, 29], rely on gradient tech-

niques to converge to an extremum of a cost function that is generally non-convex.

As a result, the final value of the cost function may not be the globally optimal

one. Many annealing techniques exist to find a better final value of a cost function.

Of these techniques, there are simulated annealing (SA) algorithms [35], as well

as a more recent development, deterministic annealing (DA) [68]. Unfortunately,

these are centralized algorithms requiring global knowledge of the total state of

the system.

Annealing algorithms differ from standard gradient algorithms through the

addition of a temperature state. The goal, as in physical annealing, is to gradually

lower this temperature, so that the internal configuration of the system is always at

or near the lowest energy state. The SA and DA techniques feature phase changes

as the temperatures are lowered past certain critical values, and we quantify these

transitions for the distributed algorithm version.

A closely related work is that of Sharma et. al. [77]. The resulting algo-

rithm discards information of other agents and resources that are far from a given

agent. However, the algorithm still requires knowledge of all agents involved in the

optimization to determine the information to discard.

In [89], SA was used to solve the clustering and formation control prob-

124

125

lems. That work also considered limited-range interactions, however, punctual

long-range communication between agents was required. A cell decomposition of

the environment had to be done a priori.

In this chapter, we extend the DA algorithm of [68]. Here, we take that

discrete DA algorithm to make it continuous in both space and time as well as

spatially distributed. We strictly enforce that an individual agent can only sense

the presence of other agents within a fixed radius. To do so, we introduce a spatial

partition of the environment, and use this to develop a distributed local check of

phase changes. Additionally, we introduce a task assignment algorithm to reassign

vehicles according to phase changes. With the limited-range constraint, we achieve

very similar results as in [68, 77]. Additionally, as this sensing radius increases,

the algorithm recovers the original DA algorithm.

The chapter is organized as follows. In section 6.1, we introduce the limited

range coverage problem, as well as provide an overview of the DA algorithm. In

section 6.2 we derive the gradient direction for a limited-range DA algorithm, and

continue in Section 6.3 to provide a sufficient condition to distributively check for

phase changes. We merge the two results in Section 6.4 by describing an algorithm

for a network of autonomous agents to implement that includes a task allocation

subroutine. We provide a simulation in Section 6.5 as a proof of concept.

6.1 Problem formulation

Let N be the total number of agents performing the proposed limited-range

distributed DA algorithm. There will be n ≤ N formations of agents, with leaders

at p(1), . . . , p(n) and p(i) ∈ Q for all i, that split during phase changes. The algo-

rithm finishes with N formations of single vehicles at positions p(1), . . . , p(N). All

agents have a limited coverage sensing radius R(i), and they have a communication

range limited to 2maxiR
(i).

As in [15], we choose to analyze the distributed DA coverage problem via

general metrics f (i) : R≥0 → R such that f (i) is Lipschitz and non-decreasing. Let

0 = R
(i)
0 < R

(i)
1 < · · · < R

(i)

m(i) = R(i) be a finite sequence of radii. We assume that

126

each f (i) is of the form

f (i)(x) =
m(i)
∑

α=1

f (i)
α (x)1

[R
(i)
α−1,R

(i)
α)
, (6.1)

such that each f
(i)
α is differentiable and non-decreasing over [R

(i)
α−1, R

(i)
α). Addi-

tionally, we have for all α, f
(i)
α (R

(i)
α) = f

(i)
α+1(R

(i)
α), which enforces continuity of

f (i).

In what follows we will consider the limited-range heterogeneous analogues

of the area-maximizing and centroidal sensing metrics found in [15]. The sensing

functions, denoted with the superscript a and m respectively, are

f (i)
area(x) =

[(x

R(i)

)c

− 1
]

1[0,R(i))(x) , (6.2)

f
(i)
cent(x) =

[
x2 − (R(i))2

]
1[0,R(i))(x) , (6.3)

where c > 2.

6.2 Limited-range DA lagrangian gradient

In order to obtain a continuous-time version of the DA algorithm adapted to

our coverage problem, we compute the gradient of the Lagrangian F with sensing

functions (6.1) in this section. To do so, we first start with a derivation of the

association probabilities, and then introduce a partition of Q that takes advantage

of the limited-range nature of agent sensors.

6.2.1 Limited-range association probabilities

Similar to the original DA algorithm, we consider each point q ∈ Q to

have some probability of being associated with an agent at p(i). The probabilities,

P (p(i)|q) i ∈ {1, . . . , n}, satisfy the following constraint for all q ∈ Q:
n∑

i=1

P (p(i)|q) = 1 . (6.4)

127

Lemma 50. The association probability distribution that minimizes F = D− TH
and satisfies (6.4) is the Gibbs distribution

P (p(i)|q) =
exp

[

−f(i)(‖q−p(i)‖)
T

]

Z(q)
, i ∈ {1, . . . , n} , (6.5)

where the normalizing factor is:

Z(q) =
n∑

i=1

exp

[

−f
(i)(‖q − p(i)‖)

T

]

. (6.6)

Proof. Following the DA derivation, we seek to minimize F = D − TH first with

respect to P (p(i)|q) subject to (6.4). We employ the conservation of mass formula

found in [15] to compute derivatives. Starting with (2.7),

∂D

∂P (p(i)|q) =

∫

Q

φ(q)f (i)(‖q − p(i)‖)dq

+

∫

∂Q

φ(γ)
∑

i

P (p(i)|γ)f (i)(‖γ − p(i)‖)n̂T

out(γ)
������*

0
∂γ

∂P (p(i)|q)dγ

=

∫

Q

φ(q)f(‖q − p(i)‖)dq .

In the above, γ : S→ Q is a parametrization of the boundary of Q. The outwards

pointing unit normal column vector along γ is denoted by n̂out(γ).

Performing the same differentiation on (2.8),

∂H

∂P (p(i)|q) = −
∫

Q

φ(q)[logP (p(i)|q) + 1]dq .

To solve the constrained minimization problem, we use the Lagrange mul-

tipliers technique. Let G =
∑n

i=1 P (p
(i)|q)− 1. In this way, ∂G

∂P (p(i)|q)
= 1. We then

solve for

∇F = λ∇G , (6.7)

G = 0 . (6.8)

Let A =
∫

Q
φ(q)dq, then λ(∇G)i =

∫

Q
1
A
φ(q)λdq. Starting with (6.7), we have

∫

Q

φ(q)

[

f (i)(‖q − p(i)‖) + T logP (p(i)|q) + T − λ

A

]

dq = 0 .

128

The above is true if for all q ∈ Q,

0 = f (i)(‖q − p(i)‖) + T logP (p(i)|q) + T − λ

A

P (p(i)|q) = exp

[
λ

AT
− 1− f (i)(‖q − p(i)‖)

T

]

.

Substituting the above into (6.8) results in

exp

[
λ

AT
− 1

]

=
1

∑n
i=1 exp

[

−f(i)(‖q−p(i)‖)
T

] ,

and we can extract the results (6.5) and (6.6).

Remark 51. The function Z(q) is continuous since each f (i) is Lipschitz. This

observation proves to be important for simplifying the analysis in future sections.•

We can take the result (6.5) and substitute it back into F :

F̂ =

∫

Q

φ(q)

[
∑

i

P (p(i)|q)f (i)(‖q − p(i)‖) (6.9)

+ TP (p(i)|q)
(

− f (i)(‖q − p(i)‖)
T

− logZ(q)

)]

dq

= −T
∫

Q

φ(q) logZ(q)dq , (6.10)

where we use the fact that
∑n

i=1 P (p
(i)|q) = 1.

6.2.2 Limited-range partition

For further analysis, it is advantageous to partition Q such that Z(q) is

differentiable over each region in this partition. We start by assuming that each

agent’s sensing function f (i) is described by equation (6.1). We define the annulus

centered at p(i) with inner radius R
(i)
α−1 and outer radius R

(i)
α as

A(i)
α = {q ∈ Q ‖ R(i)

α−1 ≤ ‖q − p(i)‖ < R(i)
α } . (6.11)

There are M =
∑n

i=1m
(i) of these sets, so we can equivalently enumerate

the A
(i)
α as As for s ∈ {1, . . . ,M}. Additionally, let β be the set of all possible

binary sequences with length M , i.e.: each bk ∈ β, k ∈ {1, . . . , 2M} is a finite

sequence of zeros and ones. Furthermore, the sth element of bk is denoted by bk,s.

129

Proposition 52. Let {Dk} be a collection of sets such that for each bk ∈ β,

Dk =

M⋂

s=1

{As if bk,s = 1 ;ACs if bk,s = 0} . (6.12)

Then, {Dk} forms a partition of Q and Z(q) is continuously differentiable in each

Dk.

Proof. We show that {Dk} forms a partition by verifying that: (i)
⋃

kDk = Q,

and (ii) Dk ∩Dℓ = ∅ for k 6= ℓ.

For the first criterion, by definition of the sets As, for any q ∈ Q it is true

that q ∈ As∗ for some s∗ ∈ S∗ ⊆ {1, . . . ,M}. Then consider the binary sequence

bk such that bk,s = 1 for each s ∈ S∗. Then by definition of the regions (6.12),

q ∈ Dk. Since q is arbitrary, every point q ∈ Q lies in some Dk, and so Q =
⋃

kDk.

For the next criterion, take two different regions Dk and Dℓ. They are

formed from the intersections

Dk =

M⋂

s=1

{As if bk,s = 1 ;ACs if bk,s = 0} , Dℓ =

M⋂

s=1

{As if bℓ,s = 1 ;ACs if bℓ,s = 0} ,

respectively. Because k 6= ℓ, the sequences bk 6= bℓ. Thus, for some index s∗,

bk,s∗ 6= bℓ,s∗. Without loss of generality, suppose bk,s∗ = 1 and bℓ,s∗ = 0. Then we

have

Dk ∩Dℓ =

[
⋂

s 6=s∗

{As if bk,s = 1 ;ACs if bk,s = 0} ∩ As∗
]

∩
[
⋂

s 6=s∗

{As if bℓ,s = 1 ;ACs if bℓ,s = 0} ∩ ACs∗
]

=

[
⋂

s 6=s∗

{As if bk,s = 1 ;ACs if bk,s = 0} ∩ {As if bℓ,s = 1 ;ACs if bℓ,s = 0}
]

∩
(
As∗ ∩ ACs∗

)

= ∅ .

We have verified both properties, therefore {Dk} is a partition of Q.

Next we show that the function Z(q) is continuously differentiable over each

Dk. From the definition (6.6), and assumption of the form of f (i) in (6.1), we can

130

write

Z(q) =

n∑

i=1

m(i)
∑

α=1

exp



−
f
(i)
α (‖q − p(i)‖)1

[R
(i)
α−1,R

(i)
α)

(‖q − p(i)‖)
T



 . (6.13)

Additionally, each of the f
(i)
α are differentiable over the annulus centered at p(i) with

inner and outer radii of R
(i)
α−1 and R

(i)
α , respectively. Because the Dk are defined

as the intersection of a subset of these annuli, Z(q) is the sum of the same set of

continuously differentiable f
(i)
α over each region Dk. Thus, Z(q) is continuously

differentiable over each Dk.

In the next section, we will use Gk to refer to the indices of the points p(i)

which form the region Dk. That is,

Gk = {i ∈ {1, . . . , n} | ‖q − p(i)‖ < R(i), ∀ q ∈ Dk
◦} .

The regions Dk also have a convenient relation to each B(i).

Proposition 53. Let A
(i)
α be the annulus centered at p(i) with inner radius R

(i)
α−1

and outer radius R
(i)
α . Each annulus A

(i)
α is exactly covered by a subcollection

of {Dk}. We denote the indices of this subcollection as C
(i)
α such that A

(i)
α =

⋃

k∈C
(i)
α
Dk.

Proof. Since {Dk} is a partition of Q, there exists a subcollection {Dk}k∈I such

that As ⊆
⋃

k∈I Dk. Let I be the smallest index set such that this is true. Then

by definition we have Dk ∩As 6= ∅ for each k ∈ I. Additionally, for each point p(i),

the set of all annuli centered at p(i) covers Q, see (6.11) and (6.1).

Now suppose there exists a Dk such that As ∩ Dk and Dk \ As are both

nonempty. Referencing the definition of Dk in (6.12), this Dk must be formed from

the intersection of As and another annulus centered at p(i), but with different radii

R
(i)
α−1, R

(i)
α . This intersection, however, is empty, and such a Dk cannot exist.

Corollary 54. Each ball B(i) of radius R(i) centered at p(i) is exactly covered

by a subcollection of {Dk}. We denote the set of indices corresponding to this

subcollection as C(i) such that B(i) =
⋃

k∈C(i) Dk. •

131

PSfrag

p(1)

p(2)

D0
D1

D2 D3

D4

D5

Variable Description

A
(1)
2 D1 ∪D4

G1 {1}
G4 {1, 2}
C(1) {1, 2, 3, 4}
C

(1)
1 {2, 3}

C
(1)
3 {0, 5}

C(2) {3, 4, 5}
C

(2)
1 {3, 4, 5}

Figure 6.1: Graphical description of notation for DA indices and sets.

We now introduce notation that will facilitate the derivation of the gradient

direction and the critical temperature check.

Definition 15 (Arcs). Let Arcs : N× N ⇉ Q be the function that takes an agent

number, i, and a region index k and produces the set of circular arcs centered at

p(i) that are found in ∂Dk. That is, Arcs(i, k) =
⋃

α ∂A
(i)
α ∩Dk.

6.2.3 Gradient formulation

The next step in the DA derivation is to optimize the Lagrangian F̂ with

respect to sensor positions p(i). Each agent in the network will use this result in

order to compute its gradient direction.

Proposition 55. Given the Lagrangian (6.10), and sensing metrics of the form

(6.1), the gradient of (6.10) is:

∂F̂

∂p(i)
= −T

∑

k∈C(i)

∫

Dk

φ(q)
1

Z(q)

∂Z

∂p(i)
dq . (6.14)

Proof. We begin by taking the following derivative (via the conservation of mass

formula in [15]):

∂F̂

∂p(i)
= −T

∑

k

[
∫

Dk

φ(q)
1

Z(q)

∂Z

∂p(i)
dq +

∫

∂Dk

φ(γk) logZ(γk)n̂
T

out(γk)
∂γk
∂p(i)

dγk

]

.

132

In the above, γk : S → Q is a parametrization of the boundary of region Dk. The

outwards pointing unit normal column vector along γk is denoted by n̂out(γk).

We now show the integrals over the boundaries ∂Dk vanish when summed

over all k. Each γk that parametrizes the boundary of Dk is composed of circular

arcs centered at various p(i). For a particular p(i), the derivative ∂γk
∂p(i)

is nonzero

only when the γk parametrizes an arc centered at p(i). Since each Arcs(i, k) is a

fixed radius from p(i),

∂γk
∂p(i)

=







IΛ , γk ∈ Arcs(i, k) ,

0 , otherwise ,

where IΛ is the square identity matrix of size Λ. Thus, only the integral along the

boundaries Arcs(i, k) needs to be considered. The derivative is now simplified to

∂F̂

∂p(i)
= −T

∑

k

[
∫

Dk

φ(q)
1

Z(q)

∂Z

∂p(i)
dq +

∫

Arcs(i,k)

φ(γk) logZ(γk)n̂
T

out(γk)dγk

]

.

Since each arc in Arcs(i, k) is part of the boundary ∂Dk, Each arc in

Arcs(i, k) is shared between two regions Dk and Dℓ. Thus, there will be two

integrals over each Arcs(i, k): one from Dk and one from Dℓ. For these two in-

tegrals, the normal vector n̂out(γk) will be equal and opposite. Additionally the

function Z(q) is continuous over Q, so the sum of these two integrals will be zero.

The derivative is simplified to

∂F̂

∂p(i)
= −T

∑

k

∫

Dk

φ(q)
1

Z(q)

∂Z

∂p(i)
dq .

We now show that the derivative ∂Z
∂p(i)

is zero if q /∈ B(i). Recall from

the limited-range assumption that each sensing function f
(i)
α (x) is a constant if

x ≥ R(i). Therefore Z as in (6.13) has no dependence on p(i) if ‖q − p(i)‖ ≥ R(i).

With this realization, we obtain the result (6.14).

Remark 56. For the area-maximizing case (6.2), we begin by computing the

133

derivative ∂Z
∂p(i)

.

∂Z

∂p(i)
=

n∑

j=1

∂

∂p(i)
exp

[

−f
(i)
area(‖q − p(j)‖)

T

]

= − 1

T

∂

∂p(i)
[f (i)

area(‖q − p(i)‖)] exp
[

−f
(i)
area(‖q − p(i)‖)

T

]

.

As an aside, we have the following result:

∂

∂p(i)
[‖q − p(i)‖c] = ∂

∂p(i)

[(
(q − p(i))T(q − p(i))

)c/2
]

=
c

2

(
‖q − p(i)‖2

)c/2−1 ∂

∂p(i)
[
‖q‖2 − 2qTp(i) + ‖p(i)‖2

]

= c‖q − p(i)‖c−2(p(i) − q)T .

Then using the above result when taking the derivative of (6.2), we obtain the

following gradient expression

∂F̂

∂p(i)
= −T

∑

k∈C(i)

∫

Dk

φ(q)
c‖q − p(i)‖c−2

(R(i))cT
(q − p(i))TP (p(i)|q)dq

= − c

(R(i))c

∑

k∈C(i)

∫

Dk

φ(q)‖q − p(i)‖c−2(q − p(i))TP (p(i)|q)dq . (6.15)

Here we see that the weight ‖q− p(i)‖c−2 serves to amplify the density φ for points

close to the boundary of B(i) while neglecting the value of φ close to p(i) for large

c. This achieves the area-maximizing effect that we seek. •

Remark 57. We can compute the derivative ∂Z
∂p(i)

using the sensing function (6.3)

in a similar manner. We then obtain the gradient (6.14) to be:

∂F̂

∂p(i)
= −2

∑

k∈C(i)

∫

Dk

φ(q)(q − p(i))TP (p(i)|q)dq . (6.16)

This is similar to the gradient expression for the mixed coverage case in [15], with

the addition of the association probabilities P (p(i)|q) as an extra weighting factor.•

6.2.4 Constant factor approximation

Thus far, we have developed a gradient direction for agents to follow in

order to minimize (6.10), which for low temperatures, minimizes the underlying

134

distortion function (2.7). We now relate how minimizing (6.10) for maxiR
(i) <

diam(Q) bears some relation to minimization of (6.10) for when R(i) > diam(Q)

for all i. In other words, we demonstrate the relation between the gradient-descent

of the limited-range DA algorithm with the gradient descent of the original DA

algorithm.

We compare the mixed case (6.3) as this is most similar to the distance

metric found in [68] and referenced as (2.9). This proposition makes it clear that

minimization of (6.10) is equivalent to minimization of the analogous function in

the original DA case as sensing radii increase.

Proposition 58. Let F0 be defined as in (2.9). Additionally, let F̂ be defined as

from (6.10). Then, the following is true:

F̂ +min
i
(R(i))2 ≤ F0 ≤ F̂ + diam2(Q) . (6.17)

Proof. Let f (i)(x) = x2 and let f
(i)
cent(x) be defined as in (6.3). Additionally, let

α = miniR
(i) and d = diam(Q). Then it is true that −f (i)

cent(x)− d2 ≤ −f (i)(x) ≤
−f (i)

cent(x) − α2. Since the exponential and logarithmic functions are monotonic

increasing, the following statements hold:

∑

i

exp

[

−f
(i)
cent(x) + d2

T

]

≤
∑

i

exp

[

−f
(i)(x)

T

]

≤
∑

i

exp

[

−f
(i)
cent(x) + α2

T

]

,

− d2

T
+ log

∑

i

exp

[

−f
(i)
cent(x)

T

]

≤ log
∑

i

exp

[

−f
(i)(x)

T

]

≤ −α
T

+ log
∑

i

exp

[

−f
(i)
cent(x)

T

]

.

Substitute each of these into the expression for F to obtain:

− T
∫

Q

φ(q)

[

−α
2

T
+ logZ(q)

]

dq ≤ −T
∫

Q

φ(q) logZ0(q)dq

≤ −T
∫

Q

φ(q)

[

−d
2

T
+ logZ(q)

]

dq .

The result (6.17) follows since φ can be normalized over Q.

135

6.3 Limited-range DA phase changes

As temperature decreases, the equilibrium points of F̂ under the evolution

of (6.14) become unstable in a special sense. The set of equilibrium agent positions

{p(i)∗} for a given temperature T and number of agents n may not be the same set

of equilibrium positions for temperature T and n+1 agents. When this happens a

phase change occurs and we say that we have reached a critical temperature. We

present a sufficient condition for agents to individually check if they have reached a

critical temperature value under both area-maximizing and mixed centroidal-area

coverage.

The introduction of virtual agents proves to be a distributed way to check

the special sense of instability that occurs at phase changes. Using a similar

argument as in [68], we enlarge the group of leaders {p(1), . . . , p(n)} with a set of

virtual agents {p(n+1), . . . , p(l)} so that for all j ∈ {n + 1, . . . , l}, p(j) = p(i) for

some i ∈ {1, . . . , n}. Then we introduce perturbations Ψ = (ψ(1), . . . , ψ(l)) ∈ R2l.

Given a scaling factor ǫ, consider the perturbed agent locations, x(i) = p(i) +

ǫψ(i), for i ∈ {1, . . . , l}. Critical points of F̂ correspond to configurations where
dF̂ (x(1),...,x(l))

dǫ

∣
∣
∣
ǫ=0

= 0. However, those configurations fail to be a minimum when

the second derivative d2F̂
dǫ2

∣
∣
∣
ǫ=0
≤ 0.

We now find the second derivative. Consider the partition {Dk} associated
with the {x(i)}, i ∈ {1, . . . , l}. The first derivative of the Lagrangian (6.10) with

respect to ǫ is

dF̂

dǫ
= −T

∑

k

[
∫

Dk

φ(q)
1

Z(q)

∂Z

∂ǫ
dq +

∫

∂Dk

φ(γk) logZ(γk)n̂
T

out(γk)
∂γk
∂ǫ

dγk

]

.

Using the same reasoning as before when computing the gradient (6.14),

the integrals over the boundaries ∂Dk cancel when summed over all k. Taking

another derivative with respect to ǫ,

d2F̂

dǫ2
= −T

∑

k

{
∫

Dk

φ(q)

[

− 1

Z2(q)

(
∂Z

∂ǫ

)2

+
1

Z(q)

∂2Z

∂ǫ2

]

dq

+

∫

∂Dk

φ(γk)
1

Z(γk)

∂Z

∂ǫ
n̂T

out(γk)
∂γk
∂ǫ

dγk

}

. (6.18)

136

Unfortunately, the same convenient cancellation of the boundary terms may

not occur here. Since each f (i)(x) is only Lipschitz, and Z(q) is composed of a sum

of exponentials of f (i), Z(q) is also only Lipschitz. The derivative of Z evaluated

at one side of the boundary ∂Dk may not be the same as it is evaluated on the

other side.

Let y(i) = q − x(i) to reduce the amount of notation. The derivative dZ
dǫ

is

computed as follows:

dZ

dǫ
=

l∑

i=1

m(i)
∑

α=1

− 1

T

∂f
(i)
α

∂ǫ
exp



−
fi,α(‖y(i)‖)1[R(i)

α−1,Ri,α)
(‖y(i)‖)

T



 1
[R

(i)
α−1,Ri,α)

(‖y(i)‖) .

Again note that this derivative may not be continuous if
∂fi,α
∂ǫ

is not continuous.

In a particular region Dk, the above simplifies to

dZ

dǫ
=
∑

j∈Gk

− 1

T

∂fj,α
∂ǫ

exp

[

−f
(j)
α (‖y(j)‖)

T

]

. (6.19)

This is because the indicator function evaluates to zero if ‖y(i)‖ = ‖q−x(i)‖ ≤ R(i),

and the index set Gk captures all such x
(i) that satisfy this condition. It should be

noted that the α in f
(i)
α may vary. This α indexes the sensing metric associated with

an annulus centered at an agent x(j). Since the region Dk is fixed, the associated

annulus index corresponding to the region Dk may change for various j ∈ Gk.

Continuing, the second derivative is:

d2Z

dǫ2
=
∑

j∈Gk

{



(

1

T

∂f
(j)
α

∂ǫ

)2

− 1

T

∂2f
(j)
α

∂ǫ2



 exp

[

−f
(j)
α (‖y(j)‖)

T

]}

. (6.20)

Since y(i) = q − p(i) − ǫψ(i), using the chain rule, ∂f
(i)
α

∂ǫ
= −ψ(i)T ∂f

(i)
α

∂y(i)
and ∂2f

(i)
α

∂ǫ2
=

ψ(i)T ∂2f
(i)
α

∂y(i)
2ψ(i).

We substitute the results (6.19) and (6.20) into (6.18). Additionally, since

137

1
Z
exp

[

−f
(i)
α

T

]

= P (x(i)|q) we get:

d2F̂

dǫ2
= −T

∑

k

{
∫

Dk

φ(q)

(

− 1

T 2

(
∑

j∈Gk

∂f
(j)
α

∂ǫ
P (x(j)|q)

)2

+
∑

j∈Gk





(

1

T

∂f
(j)
α

∂ǫ

)2

− 1

T

∂2f
(j)
α

∂ǫ2



P (x(j)|q)
)

dq

− 1

T

∫

∂Dk

φ(γk)
∑

j∈Gk

(

∂f
(j)
α

∂ǫ
P (p(j)|γk)

)

n̂T

out(γk)
∂γk
∂ǫ

dγk

}

. (6.21)

The check for critical temperature is to numerically compute d2F̂
dǫ2

∣
∣
∣
ǫ=0

at an

equilibrium configuration. The equilibrium configurations occurs when ∂F̂
∂p(i)

= 0

for all i, or equivalently, when dF̂
dǫ

∣
∣
∣
ǫ=0

= 0. If the second derivative is negative, then

the equilibrium configuration is unstable, and that signifies that we are below a

critical temperature value. To simplify the critical temperature check and make it

spatially distributed, we consider the following perturbation. Let S(i) ⊆ {1, . . . , m}
be such that j ∈ S(i) implies p(j) = p(i). We define Ψ(i) to be

Ψ(i) =
{

(ψ(1), . . . , ψ(m)) | ψ(j) = 0, ∀ j /∈ S(i);
∑

j∈S(i)

ψ(j) = 0
}

. (6.22)

If the critical temperature has not yet been reached, then these coincident agents

(i.e., leaders and virtual agents) will remain together. Otherwise, the coincident

agents are at an unstable equilibrium point, and any perturbation will force them

apart. By using this particular perturbation, we will obtain a sufficient condition

for critical temperature. We will now take the above results and consider the

metric functions (6.2) and (6.3).

6.3.1 Area metric

For the area-maximizing metric, we present the following check for critical

temperature.

Proposition 59. Critical temperature for the area-maximizing DA algorithm has

been reached if for i ∈ {1, . . . , n}, any of the following matrices F (i) are non-

138

positive definite:

F (i) =
∑

k∈C(i)

∫

Dk

φ(q)P (p(i)|q)
([

(c− 2)− c‖q − p(i)‖c
T (R(i))c

]

(q − p(i))(q − p(i))T

+ ‖q − p(i)‖2I
)

dq , (6.23)

and ṗ(i) = 0 for all i ∈ {1, . . . , n}.

Proof. With this choice of perturbations, consider the case using the area metric

f
(i)
area from (6.2). We fix an i such that the perturbation (6.22) is true and compute

d2F̂
dǫ2

∣
∣
∣
ǫ=0

using (6.21).

The derivatives ∂f
(i)
area

∂y(i)
and ∂2f

(i)
area

∂y(i)
2 are:

∂f
(i)
area

∂y(i)
=

1

(R(i))c
c

2
(‖y(i)‖2)c/2−1(2y(i)

T

) =
c

(R(i))c
‖y(i)‖c−2y(i)

T

,

∂2f
(i)
area

∂y(i)
2 =

c

(R(i))c

(c

2
− 1
)

(‖y(i)‖2)c/2−2(2y(i))y(i)
T

+
c

(R(i))c
‖y(i)‖c−2I

=
c

(R(i))c
‖y(i)‖c−4

[

(c− 2)y(i)y(i)
T

+ ‖y(i)‖2I
]

.

Since y(i) = q−p(i)−ǫψ(i), when ǫ = 0, y(j) = q−p(j) for all j ∈ S(i). However, since

p(j) = p(i), y(j) = q − p(i) for all j ∈ S(i). Similarly, the association probabilities

P (x(j)|q) = P (p(i)|q) for all j ∈ S(i).

When considering the perturbations (6.22) on (6.21), we note the following

simplification. In (6.21), there is a sum over j ∈ Gk involving the first and second

derivatives, ∂f
(j)
α

∂ǫ
= ψ(j) ∂f

(j)
α

∂y(j)
and ∂2f

(j)
α

∂ǫ2
= ψ(j)T ∂2f

(j)
α

∂y(j)
2ψ

(j) respectively. However,

if j /∈ S(i) then ψ(j) = 0. Therefore instead of summing over j ∈ Gk, we can

equivalently sum over j ∈ S(i).

With the above results, the second derivative (6.21) evaluated at ǫ = 0 can

139

be simplified as follows:

d2F̂

dǫ2

∣
∣
∣
∣
∣
ǫ=0

= −T
∑

k∈C(i)

{
∫

Dk

φ(q)

(

− 1

T 2

(

−c‖q − p
(i)‖c−2

(R(i))c
(q − p(i))T

·P (p(i)|q)
�
�
�
�7
0

∑

j∈S(i)

ψ(j)





2

+
∑

j∈S(i)





(

1

T

∂f
(j)
α

∂ǫ

)2

− 1

T

∂2f
(j)
α

∂ǫ2



P (p(i)|q)
)

dq

− 1

T

∫

∂Dk

φ(γk)



−c‖γk − p
(i)‖c−2

(R(i))c
(γk − p(i))TP (p(i)|γk)

�
�
�
�7
0

∑

j∈S(i)

ψ(j)





· n̂T

out(γk)
∂γk
∂ǫ

dγk

}

= −T
∑

k∈C(i)

{
∫

Dk

φ(q)




∑

j∈S(i)





(

1

T

∂f
(j)
α

∂ǫ

)2

− 1

T

∂2f
(j)
α

∂ǫ2



P (p(i)|q)



 dq

= −
∑

j∈S(i)

∑

k∈C(i)

∫

Dk

φ(q)P (p(i)|q)
[

1

T

(

−c‖q − p
(i)‖c−2

(R(i))c
ψ(j)T(q − p(i))

)2

− ψ(j)T c

(R(i))c
‖q − p(i)‖c−4

[
(c− 2)(q − p(i))(q − p(i))T

+‖q − p(i)‖2I
]
ψ(j)

]

dq .

Factoring out ψ(j) from the left and right sides and using the substitu-

tion (6.23), the second derivative evaluated at ǫ = 0 is:

d2F̂

dǫ2

∣
∣
∣
∣
∣
ǫ=0

=
c‖q − p(i)‖c−4

(R(i))c

∑

j∈S(i)

ψ(j)TF (i)ψ(j) .

It is clear now that in order for an equilibrium configuration to be stable in the

area-maximizing case, the matrix quantity in (6.23) must be positive definite.

6.3.2 Mixed metric

We perform the same analysis for the mixed centroidal-area coverage sensing

metric (6.3). This metric is most similar to that found in [68] and [77].

Proposition 60. Critical temperature for the centroidal-area DA algorithm has

140

been reached if for i ∈ {1, . . . , n}, any of the following matrices F (i) are non-

positive definite:

F (i) =
∑

k∈C(i)

∫

Dk

φ(q)P (p(i)|q)
[

I − 2

T
(q − p(i))(q − p(i))T

]

dq , (6.24)

and ṗ(i) = 0 for all i ∈ {1, . . . , n}.

Proof. The derivatives
∂f

(i)
cent

∂y(i)
and

∂2f
(i)
cent

∂y(i)
2 , when ‖y(i)‖ ≤ R(i), are:

∂f
(i)
cent

∂y(i)
= 2y(i)

T

∂2f
(i)
area

∂y(i)
2 = 2I .

Since y(i) = q − p(i) − ǫψ(i), when ǫ = 0, y(j) = q − p(i) for all j ∈ S(i). Similarly,

the association probabilities P (x(j)|q) = P (p(i)|q) for all j ∈ S(i). Therefore, with

the perturbations (6.22) and the mixed metric (6.3), the second derivative (6.21)

evaluated at ǫ = 0 can be simplified as follows:

d2F̂

dǫ2

∣
∣
∣
∣
ǫ=0

= −T
∑

k∈C(i)

{
∫

Dk

φ(q)

(

− 1

T 2



−2(q − p(i))TP (p(i)|q)
�
�
�
�7
0

∑

j∈S(i)

ψ(j)





2

+
∑

j∈S(i)

[(

− 2

T
ψ(j)T(q − p(i))

)2

− 2

T
ψ(j)TIψ(j)

]

P (p(i)|q)
)

dq

− 1

T

∫

∂Dk

φ(γk)



−2P (p(i)|γk)(γk − p(i))T

�
�
�
�7
0

∑

j∈S(i)

ψ(j)



 n̂T

out(γk)
∂γk
∂ǫ

dγk

}

= −
∑

k∈C(i)

{
∫

Dk

φ(q)P (p(i)|q)

·




4

T

∑

j∈S(i)

(

−ψ(j)T(q − p(i))
)2

− 2ψ(j)TIψ(j)



 dq

}

= 2
∑

j∈S(i)

∑

k∈C(i)

∫

Dk

φ(q)P (p(i)|q)
[

ψ(j)TIψ(j) − 2

T

(

ψ(j)T(q − p(i))
)2
]

dq .

Factoring out ψ(j) from the left and right sides and using the substitu-

141

tion (6.24), the second derivative evaluated at ǫ = 0 is:

d2F̂

dǫ2

∣
∣
∣
∣
∣
ǫ=0

= 2
∑

j∈S(i)

ψ(j)TF (i)ψ(j) .

It is clear now that in order for an equilibrium configuration to be stable in the

area-maximizing case, the matrix quantity in (6.24) must be positive definite.

6.4 Distributed implementation

We have so far demonstrated how a network of agents can descend the

gradient and check for phase changes in a distributed DA algorithm. However, we

still must provide a distributed method for implementing these phase changes.

6.4.1 Algorithm descriptions

The DA algorithm begins with one active agent, and the other agents mov-

ing in formation with it. A formation will split in two if its critical temperature

is reached. The agents following in formation are divided evenly between the cur-

rent formation leader and a new formation leader. After the first phase change,

it is possible that future phase changes occur at an agent who is by itself. There-

fore, this agent must communicate its desire for an additional companion, and the

network of agents must distributively assign an inactive agent to this task. We

propose a task-assignment algorithm to accomplish this.

We provide a possible scheme under the following assumptions: (1) Agents

have knowledge of the total number of formations n and the total number of agents

N , (2) The communication graph between all active agents is connected, (3) Each

active agent knows the number of inactive agents traveling with it, and (4) All

agents have knowledge of the initial temperature, and the cooling factor κ.

Connectivity of the communication graph is important because both the

temperature and the total number of active agents must be constant across all

agents. We assume that if the graph is connected, the agents can agree on the

current temperature, and determine through a flooding algorithm (see [45]) the

142

Algorithm 3: Distributed DA algorithm for each agent

T ← initial temperature

while T > Tmin or n < N do

while floodMax(‖ṗ(i)‖) > ǫ) do

ṗ(i) ← −computeGradient()

end

if checkSplit() == true then flood(“Tc reached”)

if received “Tc reached” then

doTaskAssign() N − n times

end

T ← κT

end

doNormalCoverage()

number of active agents n at any point in time. Additionally, agents must wait for

the flooding algorithms to terminate; the worst case is proportional to the diameter

of the communication graph.

First we define some algorithmic primitives specific to this application.

We let computeGradient() be the function that computes (6.14), and we let

checkSplit() be the function that determines if a critical temperature has been

reached as in (6.23) and (6.24). Finally, we introduce doNormalCoverage() to

mean to perform limited-range coverage as from [15].

The distributed DA algorithm can informally be described as follows, see

Algorithm 3. Starting with a single formation, and a high initial temperature,

formations descend the gradient (6.14). When all agents agree they are stationary,

they individually check for phase changes and, if necessary, implement Algorithm 4

N − n times to guarantee the assignment of all companion requests. The temper-

ature is lowered, regardless of whether or not there was a phase change, and the

gradient descent is continued. This process repeats until the system temperature

is below a minimum temperature threshold Tmin or if n = N . Once this hap-

pens, the agents perform the normal coverage algorithm described in [15], as this

143

is equivalent to having T = 0.

6.4.2 Algorithm complexity

We first characterize the complexity of the task assignment Algorithm 4

in terms of worst-case number of messages passed. Then we address the time

complexity of the overall Algorithm 3 in terms of the time complexity for a typical

gradient descent.

Algorithm 4 outlines the task assignment algorithm for agents who are

in need of a companion to split. Roughly speaking, there are three rounds of

communication where an agent broadcasts its need for a companion, other agents

reply if they can help, and finally a handshake is formed with the agent transfer.

In this algorithm, n is incremented for every new formation, and this command

is flooded over the network. This algorithm has a finite termination time upper

bounded by 3n+ n(N − n) messages passed.

While work has been done addressing the convergence rate for Lloyd’s algo-

rithm in one dimension, cf. [48, 19], the convergence rate for such gradient descent

algorithms in higher dimensions remains open. Additionally, with a dynamic gra-

dient descent as in Algorithm 3, we assume that motion of agents is slow compared

to the delays involved in wireless communication or gradient computation. Nev-

ertheless, one can compare the performance of the DA algorithm to the typical

Lloyd gradient descent.

Referring to Algorithm 3, a dynamic gradient descent using the gradi-

ent (6.14) is performed for n ≤ N agents until a phase change is handled. At

a phase change resolution, it is possible for more than one agent to undergo a

phase change, but the worst-case scenario would be for the entire process to un-

dergo N − 1 phase changes before performing doNormalCoverage(). After each

phase change, a new gradient descent is performed. Thus, compared to a normal

gradient descent, the DA algorithm could perform N gradient descents. In gen-

eral, this represents a trade off between overall execution time and optimality of

the final cost function.

144

Remark 61. Alternatively, we can imagine a scenario where a total of N agents

wish to deploy in an environment from a base station. First, a single agent departs

and descends the DA gradient. At the time of a phase change, this agent radios

back to the base asking for help, and the next agent joins the deployment task.

This process repeats until all N agents have left the base. Thus, we would achieve

better coverage than typical gradient descent with mostly local communication,

punctuated with N − 1 long-distance communication instances back to the base

station. •

6.5 Simulations

We present a simulation of the limited-range DA algorithm using the area-

maximizing sensing function (6.2) in Figure 6.2. The total number of agents is

N = 8 and the square region Q has length 10 per side. Each agent has a sensing

radius of R = 2. The initial temperature is T = 10 and the annealing factor

κ = 0.9 in this simulation.

As the temperature decreases, we see the agents split and continue to in-

crease coverage area. Once the minimum temperature is reached, the coverage

algorithm of [15] is conducted, and Figure 6.2 (f) shows the limited-range Voronoi

partitions separating each agent.

To compare this algorithm with the normal limited-range (area) coverage

algorithm in [15], we conducted 100 simulations of the normal coverage algorithm

and compared the cost function (2.7) for T = 0. Eight agents with sensing radius

R = 2 were uniformly and randomly distributed over Q. Over the 100 runs,

the minimum area covered was 93.5% of the total area, the maximum was 96.4%

and the mean was 95.9%. The limited-range DA algorithm had a final coverage

area of 96.1%. For the particular φ in Figure 6.2, the normal (area) coverage

simulations show how the final cost has dependence on initial conditions. However,

the distributed DA algorithm converged to the same cost over many random initial

conditions.

Next, we present a simulation of the limited-range DA algorithm using

145

1(7)

(a)

1(3)

2(3)

(b)

1(0)

2(3)

3(1)

4(0)

(c)

1(0)

3(1)

4(0)

2(1)

5(0)

6(0)

(d)

1(0)
4(0)

5(0)

6(0)

2(0)

3(0)

7(0)

8(0)

(e)

1

2
3

4

5

6

7

8

(f)

Figure 6.2: A typical run of the limited-range DA algorithm. Agents are labeled
in (a)-(f) and the number of agents in formation are contained in parenthesis in
(a)-(e). Agent positions at each time step are shown as the small circles. The
temperatures begin at T = 10 (a), then decrease: T = 0.15 (b), T = 0.12 (c),
T = 0.1 (d), T = 0.01 (e). The final panel (f) shows the result of running normal
coverage starting from the configuration of (e).

the mixed centroidal-area sensing function (6.3). The total number of agents is

N = 6 and the square region Q has length 10 per side. We will demonstrate

the performance of the DA algorithm versus a normal Lloyd-type gradient descent

found in [15] as sensing radius decreases.

We first consider the limiting case where all agents can sense the entire

region Q. We ran the DA algorithm once, since the initial condition does not

influence the outcome of the convergence. For comparison, we ran 50 simulations

starting from random initial conditions of the Lloyd-like algorithm. The DA al-

gorithm converges to the optimal cost of 10.64 regardless of initial condition in

Figure 6.3. On the other hand, the Lloyd-like gradient descent achieved this final

146

1(5)

(a)

2(2)
1(2)

(b)

2(2)

3(1)

1(0)

(c)

3(1)

1(0)

2(0)

4(1)

(d)

1(0)

2(0)

4(0)

3(0)

5(0)

6(0)

(e)

1

2

3

4

5

6

(f)

Figure 6.3: A typical run of the limited-range DA algorithm. Agents are labeled
in (a)-(f) and the number of agents in formation are contained in parenthesis in
(a)-(e). Agent positions at each time step are shown as the small circles. The
temperature begins at T = 20, then decrease: T = 13.1 (a), T = 12.5 (b), T = 2.4
(c), T = 2.1 (d), T = 0.5 (e). The final panel (f) shows the result of running the
normal gradient-descent coverage starting from the configuration of (e).

configuration only 4 of the 50 tries. The worst simulation converged to a final cost

of 18.19, see Figure 6.4. The average final cost of the 50 simulations was 15.4.

Comparing the running time, the DA algorithm converged to the final configura-

tion in 133s of simulated time, while the normal gradient descent took on average

only 18s of simulated time to finish.

Now we consider smaller sensing radii to see how the DA algorithm per-

forms. A sensing range of R = 4 for each agent was sufficiently large for the DA

algorithm to converge to the final configuration shown in Figure 6.5 regardless of

initial position. Next, 50 trials of the Lloyd-like gradient descent were computed.

The DA algorithm converges to the minimum cost of −277.5 regardless of initial

147

(a) (b)

Figure 6.4: A comparison between the best-case performance of the Lloyd-like
gradient decent (left) with a cost of 10.64, to the worst-case (right) with a cost of
18.19.

position whereas only 3 of the 50 trials of the Lloyd-like gradient descent achieve

that cost. The worst case converged to a cost of −270.3 with a mean of −272.3.
The cost values are negative since the metric (6.3) has the −(R(i))2 term. When in-

serted into the distortion function (2.7), this creates large negative quantities. The

run time of the DA algorithm was 79s compared to the normal gradient descent

average run time of 17s.

We further reduce the sensing radius to R = 3, and perform similar trials.

Due to the smaller sensing radius, initial conditions begin to influence the outcome

of the DA algorithm. For this particular choice of φ, we have the two possible

outcomes shown in Figure 6.7. The better outcome of the DA attains a final cost

of −151.5, while the worse outcome reaches a final cost of −110.5. Over the 50

random Lloyd-like gradient descent simulations, only 2 reach the configuration

shown in 6.8, which is also 6.7 (c). The worst case of all 50 trials was a cost of

−103.5, with an average of −135.3. The average run time of the DA algorithms

was 70s compared to the average run time of the normal gradient descent of 17s.

Further analysis of this scenario, however, demonstrates that the limited-

range DA algorithm still has an advantage over a normal gradient descent algo-

rithm. Figure 6.9 shows the set of initial conditions for which the limited-range

DA algorithm converges to the best solution. This figure was generated using a

find grid of initial positions, and recording the outcome. Note that over half of the

148

1(5)

(a)

2(2)

1(2)

(b)

2(2)

1(1)

3(0)

(c)

2(2)

1(0)
4(0)

3(0)

(d)

1(0)

2(0)

4(0)

3(0)

5(0)

6(0)

(e)

1

2

3

4

5

6

(f)

Figure 6.5: A typical run of the limited-range DA algorithm with R = 4. Agents
are labeled in (a)-(f) and the number of agents in formation are contained in
parenthesis in (a)-(e). Agent positions at each time step are shown as the small
circles. The temperature begins at T = 20, then decrease: T = 2.2 (a), T = 2.1
(b), T = 2.0 (c), T = 1.9 (d), T = 0.1 (e). The final panel (f) shows the result
of running the normal gradient-descent coverage starting from the configuration of
(e).

possible initial condition locations leads to the optimal solution while only 4% of

the Lloyd-like gradient descent simulations achieved the same final cost.

The limited-range DA algorithm may have decreased performance versus a

normal gradient-descent algorithm. If sensing range is not large enough, as was

observed in the previous example, the DA algorithm may fall into a local mini-

mum. Consider the distribution shown in Figure 6.10, where there are two equal

Gaussians symmetrically placed at opposite corners of Q. Almost every simulation

of the limited-range DA algorithm results in a final configurations like 6.10(a), or

its mirror image. This occurs because the DA algorithm begins with only one

149

(a) (b)

Figure 6.6: A comparison between the best-case performance of the Lloyd-like
gradient decent (left), to the worst-case (right). The sensing radius for all agents
is R = 4.

agent, and this agent moves towards the nearest Gaussian that it senses and stays

there. Then, future phase changes result in only adding more agents around the

same Gaussian.

On the other hand, over 50 trials of the Lloyd-like gradient descent with

similar initial conditions as before, we see an improved statistic. Only 18 of the

50 simulations fell into the worst-case minima of Figure 6.10(a). However, none of

the simulations were able to converge to the best configuration, which is having 5

agents located around each Gaussian.

A possible way to address this problem of the limited-range DA algorithm

is to consider a heating and cooling cycle. Agents can deploy over Q using an area-

maximizing technique. Thus, agents will tend to move away from each other and

cover all of Q, as shown in Figure 6.11(a). Then, the limited-range DA algorithm

is run with a high temperature. This forces agents to collect together about denser

parts of Q, shown in Figure 6.11(b)–(c). Finally, the usual limited-range DA

coverage is run, causing agents to split evenly over the important areas of Q,

as in Figure 6.11(d)–(f). Note, however, that the communication connectivity

requirement must be modified so that an agent can communicate with any other

agent in Q for this solution to work.

150

1(5)

(a)

1(0)
2(0)

4(0)

5(0)3(1)

(b)

1

2

3

4

5

6

(c)

1(5)

(d)

1(0)

4(0)

3(0)
5(0)

2(1)

(e)

1

2

34
5

6

(f)

Figure 6.7: Two runs of the limited-range DA algorithm with R = 3. In (a)–(c),
the temperature begins at T = 20 and decreases: T = 2.2 (a), T = 0.8 (b), with a
final configuration in (c). Similarly in (d)–(f), the temperature begins at T = 20
and decreases: T = 2.0 (d), T = 0.5 (e), with a final configuration in (f). Agent
positions at each time step are shown as the small circles.

(a) (b)

Figure 6.8: A comparison between the best-case performance of the Lloyd-like
gradient decent (left), to the worst-case (right). The sensing radius for all agents
is R = 3.

151

Algorithm 4: Task assignment algorithm for each agent

a(i) ← number of agents in formation

if checkSplit() == true then

if a(i) == 0 then

flood(“need companion at p(i)”)

M ← positions p(j) of replies for help

if m(i) == null, ∀m(i) ∈ M then

return

else

J ← sortAscending({‖p(i) − p(j)‖}, j ∈ M)

j∗ ← removeFirst(J)

send(“request companion”, j∗)

flood(“increment n by 1”)

end

else

split formation evenly

flood(“increment n by 1”)

end

else // no splitting at p(i)

M ← received companion requests p(j)

J ← sortAscending({‖p(i) − p(j)‖}, j ∈M)

if a(i) == 0 then

send(null, ∀ j ∈ J)
else

while length(J) > 0 and a(i) > 0 do

j∗ ← removeFirst(J)

send(“help available from p(i)”, j∗)

a(i) ← a(i) − 1

end

end

end

152

Figure 6.9: DA sensitivity to initial conditions. For initial conditions of the
limited-range DA algorithm that start to the left of the thick black line, simulations
converge to the optimal solution.

(a) (b)

Figure 6.10: A comparison between the best-case performance of the Lloyd-
like gradient decent (right), to the worst-case (left) for the symmetric Gaussian
scenario. The sensing radius for all agents is R = 3.

153

(a) (b) (c)

(d) (e) (f)

Figure 6.11: A demonstration of a heating and cooling cycle with R = 3. Agents
perform area-maximizing coverage (a), then agents run the limited-range DA al-
gorithm for high temperature, T = 20, (b)–(c), and the trajectories towards the
upper-left and lower-right corners are shown as a series of dots. Finally, agents
perform the usual limited-range DA algorithm in (d)–(f).

Chapter 7

Robotic Testbed

Thus far, we have outlined several different aspects of cooperative coverage

control for mobile vehicles. Each aspect has focused on a particular constraint

that may arise in a physical application. To demonstrate the efficacy of those

results, we implement some coverage control algorithms in a robotic testbed at the

University of California at San Diego. In general, we developed our testbed with

with cost-effectiveness and ease of development in mind.

We first describe the organization and interplay between various elements of

the experimental set up. This includes the construction of the individual robotic

vehicles, the overhead vision system, and the central server that logs data and

handles communication between agents. Finally, we conduct an experiment of

coverage in the laboratory and present its results.

7.1 Central server

In its current implementation, the testbed is indoors. This scenario has the

following implications: (a) individual vehicles cannot rely on GPS for position and

orientation information, and (b) due to the small confines of the lab space, inter-

vehicle wireless communication will be essentially all-to-all. We utilize a central

server to address those issues by simulating a GPS-enabled environment, and also

by handling communication between agents. In this way, we are able to simulate

deployment with limited-range interactions. We now go in detail to describe the

154

155

functions of the central server, a Dell Optiplex 360 running with a 2.53 GHz Intel

Core 2 Duo, 2GB RAM, and the Ubuntu 10.04 32-bit operating system.

7.1.1 Overhead vision

We utilize an overhead camera to address the need for accurate position

and orientation measurements. The setup consists of a Logitech QuickCam Pro

9000 webcam mounted above and connected to the central server via USB. The

server performs image processing on the video feed using Java and computes the

position and orientation of all active robots at a data rate of 10Hz. The camera

resolution is 640 × 480 pixels, and that covers a floorspace of 3.6m × 2.5m. This

results in pixels that correspond roughly to a 5mm× 5mm patch of the lab floor.

To further smooth the data from the overhead camera, we employ a discrete-

time Kalman filter.

Assumption 4. We assume that the model of these robots for the Kalman filter

implementation satisfies:

1. the amount of time that passes in the lab from one discrete time step to the

next is constant, and

2. over the span of one time step, the robot will undergo circular motion with

constant speed and turning rate.

In the following, we will develop a linear time-varying model for an agent

and use this to create a Kalman filter that handles noisy data from the image

processing stage as well as the occasional dropped frame. We will let p ∈ R2

denote the position of the agent and θ ∈ S1 denote its orientation. The state of

the agent at time step k can be described with the pair (pk, θk).

Under the assumptions stated previously, the position and orientation of

the agent at the next time step can be calculated using the current and previous

position and orientation. Referencing Figure 7.1, we can see that if a vehicle is

constrained to move on a circle with fixed speed, then consecutive positions of the

vehicle are equally spaced apart. Furthermore, the location of pk+1 is the reflection

156

(pk−1, θk−1) (pk, θk)

(pk+1, θk+1)

Figure 7.1: Diagram to aid in the derivation of the smoothing Kalman filter.

of pk−1 over the axis passing through pk with an angle of θk +
π
2
. To solve for the

next position and orientation, we will utilize the rotation matrix

Rk =

(

cos θk − sin θk

sin θk cos θk

)

,

along with the reflection matrix

T =

(

−1 0

0 1

)

.

The rotation matrix Rk performs a counter-clockwise rotation by an angle of θk

while T performs a reflection across the vertical axis. The location of the point

pk+1 is then

pk+1 = pk + RkTR
−1
k (pk−1 − pk) .

Since Rk is orthonormal, R−1
k = RT

k and

pk+1 = (I2 − RkTR
T

k)pk +RkTR
T

k pk−1 . (7.1)

Additionally, since the turning rate is assumed to be constant,

θk+1 = 2θk − θk−1 . (7.2)

Let ξk = (pk, θk, pk−1, θk−1). Combining (7.1) and (7.2), the discrete-time state

157

update equation is









pk+1

θk+1

pk

θk










︸ ︷︷ ︸

ξk+1

=










I2 −RkTR
T

k 0 RkTR
T

k 0

0 2 0 −1
I2 0 0 0

0 1 0 0










︸ ︷︷ ︸

Fk










pk

θk

pk−1

θk−1










︸ ︷︷ ︸

ξk

. (7.3)

Now we introduce noise into the model. Let yk be the measured position

of an agent, and wk, vk be zero-mean Gaussian noise with covariances Q̄k, R̄k,

respectively. We assume that there is no cross-correlation between any of the

position and orientation components of the sensing and plant noise. Additionally,

since the overall state vector ξk is contains information from the previous state,

there is no additional noise added to the (pk−1, θk−1) components. The covariance

matrices have the following structure:

Q̄k =







Q̄p,k 0 0

0 Q̄θ,k 0

0 0 0






, R̄k =







R̄p,k 0 0

0 R̄θ,k 0

0 0 0






.

We assume that the plant noise is constant in time, Q̄k = Q̄. To account for a

dropped frame at the kth time step in the video capturing process, we let R̄k have

arbitrarily large values along its diagonal.

Following the formulation for a Kalman filter, as in [78], we have the fol-

lowing one-step smoothing Kalman filter:

ξ̂k = Fk−1ξ̂k−1 +Kk(yk −Fk−1ξ̂k−1) ,

Pk = (I6 −Kk)(Fk−1Pk−1F
T

k−1 + Q̄) ,

Kk = (Fk−1Pk−1F
T

k−1 + Q̄)(Fk−1Pk−1F
T

k−1 + Q̄+ R̄k)
−1 .

(7.4)

We implement this for each active robot on the server side in Java to obtain a

better estimate of the position and orientation of each robot.

7.1.2 Communication

Communication between robots is handled via the central server. In this

way, we can impose range-based communication constraints using information from

158

the overhead vision system. The actual wireless communication is done over the

UCSD wireless network using Java’s implementation of TCP/IP sockets. While the

TCP/IP link has its own protocol for redundancy and error checking, the actual

messages passed via TCP/IP are done in an asynchronous manner.

We choose an asynchronous communication architecture for robust-ness

against dropped packets and agent failures. For example, in a synchronous setting

if an agent does not respond that it has received a message, the server may wait

indefinitely and this will cause the entire cooperative deployment process to halt.

Received messages are treated as incoming events that trigger a sequence of actions

to be performed locally. Likewise, requests that are sent out over the network do

not necessarily result in immediate responses. Locally, an agent will have an event

handler in the case of receiving a response at a later time.

We impose communication constraints by having agents send their own

communication range to the server. The server referees requests from agents for

their neighbors by determining via the vision system if any other agents are in

range. If we were to implement an adhoc wireless network, the small size of the

lab space would result in having all-to-all communication at all times. The overall

testbed architecture is summarized in Figure 7.2.

7.2 Robot description

In this section we will detail the construction and components of the five

mobile robots in our testbed. Afterward, we will describe the motion controller

that is implemented on each robot.

7.2.1 Components and construction

Mobile robot choices range from taking a complete do-it-yourself standpoint

all the way to purchasing a ready-built documented robot with a development kit

such as the Khepera III [32]. Those two options represent the two extremes of

the developmental ease scale. However, the cost scale is, in general, inversely

proportional to ease of development.

159

Figure 7.2: Overall testbed architecture and organization.

We proposed a compromise between the two extremes, affording each of

our robots significant computational power with a lower cost at the expense of

some developmental ease and compactness in size. At the heart of each robot is

a Samsung N150 netbook, equipped with an Intel 1.66 GHz N450 atom proces-

sor running Windows 7. This netbook provides a relatively compact solution for

wireless communication and motion planning that can be done on board.

For motion, we utilize two Hitec HS-755Hb 1/4 Scale servos that are mod-

ified for continuous rotation. These two servos are controlled via a Micro Maestro

6-Channel USB Servo Controller from Pololu Robotics and Electronics. While

we could have used a pair of DC motors for motion, the required electronics for

controlling the motors would have either greatly increased cost or added much

development time to the robot construction process.

The complete bill of materials, priced in May 2010 without shipping costs

160

and tax, is shown in Table 7.1. Certain items such as the black acrylic and the

LEDs needed to be purchased in larger quantities. The prices shown in Table 7.1

reflect the cost of just the material used in construction of a single robot.

The larger acrylic pieces were cut down to size using the Lasercamm avail-

able in EBUII, Room 315. The rest of the components were wired and assembled

in our own lab. The LEDs are used for identification and tracking purposes in

conjunction with the overhead camera. Figure 7.4 details the LED arrangement,

allowing for overhead position and orientation tracking as well as a unique iden-

tification number for the robot ranging from 0 to 26. A Solidworks model of an

assembled robot is shown in Figure 7.3 without the LED indicator lights along

with a photograph of a robot in the lab.

Figure 7.3: A drawing of the robot in Solidworks without the LED indicator
lights for the overhead vision system at left and a photograph of a robot in the lab
with LED lights.

Using a netbook allows for ease of expanding the capabilities of each robot.

The USB interface allows for the addition of any compatible device or sensor. For

example, if we wish to perform deployment outdoors, then one can add on a USB

GPS device and obtain position and orientation information. One can also have

the possibility of placing range finders and other obstacle-avoiding sensors on the

robot and interfacing via a A-to-D USB converter.

The only limiting factor for the current implementation is the processor

speed of the netbook. However, if that becomes an issue, then obtaining a more

powerful laptop in the future will result in very little time needed to transition the

software to the new laptop due to the ubiquity of the Java programming language.

The current implementation of the robots can be thought of as a concept model for

161

L0L1

L2

Red Green Blue

0 1 2

Figure 7.4: Schematic of the LED identification tag that each robot displays.
The triangular shape of the three lights gives position and orientation information,
indicated by the dot and arrow. The different colors–red, green, and blue–of the
LEDs correspond to 0, 1, 2, respectively. Combined as L0 · 30+L1 · 31+L2 · 32, this
gives each robot a unique identification number ranging from 0 to 26.

distributed deployment. Indeed, with some modifications, these robots may be able

to operate outside without the need for simulated GPS or simulated communication

constraints.

7.2.2 Motion controller

The dynamics of each robot are best approximated by the equations of

motion of (4.1), repeated here:

ṗ
(i)
1 = v(i) cos θ(i) ,

ṗ
(i)
2 = v(i) sin θ(i) ,

θ̇(i) = ω(i) .

Therefore, in order to navigate to any given waypoint, C(i), we implemented the

motion controller described in equations (4.6)–(4.9). Specifically, if the desired

162

waypoint C(i) is in front of agent i, then that agent will use the dynamics given by

v(i) = kp sat(‖C(i) − p(i)‖) ,

ω(i) =
2ωmax

π
Ω(i) ,

(7.5)

where Ω(i) = ∠(C(i) − p(i))− θ(i) and Ω(i) ∈ [−π, π]. If C(i) is behind the vehicle,

then |Ω(i)| > π
2
and the robot will turn in place according to

v(i) = 0 ,

ω(i) =
2ωmax

π
sgn(Ω(i)) .

(7.6)

We allow the agent to come to a complete stop when it is within 5 cm of the desired

waypoint.

7.3 Experimental results

In this section, we demonstrate various deployment scenarios with the

robots in the testbed. The first one is an application of the nonholonomic cover-

age algorithm described in Chapter 4 for vehicles with variable forward velocities.

Next, we will demonstrate power-limited deployment.

We will demonstrate two examples of nonholonomic deployment. For the

first example, we wish to have the robots deploy into a circular formation. To

achieve this, we choose the following density function

φ(q) = 5 exp

[

− 1

σ2
(‖q − q0‖ − r)2

]

, (7.7)

with r = 150, q0 = (240, 320)T, and σ = 25. The agents employ the motion

controller described in the previous section and use the positions of themselves and

their neighbors to compute the centroid of their Voronoi regions. The deployment

process was logged by the central server and the data is presented in Figure 7.5.

The agents successfully deploy to centroidal configurations and they form a circle.

The corresponding time evolution of cost function is also shown in the figure and

it is indeed minimized. A picture of the robots in the final configuration is shown

in Figure 7.6.

163

1
2

3
4

5
8

16
×109

0 20 40
t

H

Figure 7.5: An experimental run with a circular density function. Agent initial
positions are denoted as the black dots in the left figure, and their final positions
and orientations are shown as the green triangles. The data was taken from the
overhead vision system and the corresponding cost function is shown at right.

In the second example of nonholonomic deployment, we choose the density

function φ to be a sum of four Gaussian peaks with different amplitudes and

variances. We also enforce a sensing range of 200 pixels, which is approximately

1m. Experimental results are shown in Figure 7.7 along with the objective function

evolution. Note that in this case, as in Chapter 3, we are maximizing the objective

function. A picture of the robots in the final configuration is shown in Figure 7.8.

Next, we test the power-limited deployment algorithm for the MWVD de-

scribed in Chapter 3 using the same φ as the previous experiment. We initialize

the agents with E(i) = 500 for all i ∈ until5. Energy use is simulated locally at

each robot by subtracting an amount of energy proportional to the commanded

servo actuation speed at each time step. The results are shown in Figure 7.9 along

with a picture of the final deployment configuration. Final energy values were

E(1) = 222, E(2) = 293, E(3) = 143, E(4) = 216, and E(5) = 293. Unfortunately,

due to the asynchronous nature of the testbed communication, we cannot display

a plot of the cost function as this relies on the knowledge of agent energies at all

times.

Finally, we demonstrate a DA deployment for the five robots. We choose

164

Figure 7.6: Screen capture of the limited-range nonholonomic deployment with
the density function overlaid on top.

1

2

3

4
5

4

8

12
×108

0 25
t

H

Figure 7.7: Limited-range nonholonomic deployment for a collection of Gaussian
peaks. Note that the objective function is maximized in this case.

φ to be the sum of five Gaussian peaks with varying amplitudes and variances.

Rather than moving in formation, we implement the version of distributed DA

deployment described in Remark 61. Figure 7.10 displays experimental data from

the entire run along with a picture of the final agent configurations in the testbed.

Each plot details the paths of all active robots, along with the positions and orien-

tations of the inactive robots located at the bottom area of each plot. There were

a total of five plots corresponding to the four phase changes that occurred for this

particular choice of φ.

165

Figure 7.8: Screen capture of the limited-range nonholonomic deployment with
the density function overlaid on top.

1

2

3

4
5

Figure 7.9: Power-limited MW deployment in the testbed. Data and path infor-
mation from the vision system is shown at left and a screen capture of the final
configuration is shown with the density overlaid on the right. Initial energy lev-
els were E(i) = 500 for all i ∈ {1, . . . , 5}. Final energy values were E(1) = 222,
E(2) = 293, E(3) = 143, E(4) = 216, and E(5) = 293.

166

Table 7.1: Robot bill of materials, May 2010

Amazon

Samsung N150 Netbook 279.99

McMaster-Carr

11” x 8” x 0.236” Black Acrylic 5.75

11” x 8” x 0.117” Black Acrylic 4.08

12” x 0.75” x 0.75” Acrylic 3.04

4 x 1.5” Standoffs 2.60

6 x 0.25” Standoffs 2.52

Pololu

2 5/8” tires 3.50

Ball Casters 5.98

Servo Controller 24.95

Fry’s Electronics

3-Pin Molex male to female cable 2.99

2-Pin male to 2-pin female cable 1.49

6 x 470 ohm resistors 0.48

5V voltage regulator 1.79

4” x 5” prototyping board 4.99

Digikey

6 x LED 1.58

RC Planet

2 x Hitec HS-755Hb 1/4 Scale Servo 57.98

onlybatterypacks.com

7.2V Team Losi battery pack 21.50

UCSD Bookstore

1ft Mini USB cable 2.99

Radioshack

SPDT Switch 3.79

Total $431.99

167

1

2345

1

2

345

1
2

3

45

12

3

4

5

1
2

3

4
5

Figure 7.10: DA deployment in the testbed

Chapter 8

Closing remarks

We now offer some concluding remarks and thoughts for future extensions

that may be taken from this dissertation. The topic of cooperative motion control

is a natural consideration with the increasing use of single autonomous vehicles.

This dissertation has addressed a small subset of problems that must be considered

for certain real-world applications. Still, these issues and many others must be

taking into account before a reliable implementation of a cooperative multi agent

system can occur. The ideas contained within this dissertation may have employed

relatively simple models of vehicles, but the successful results using these models

shows promise for applications involving much more complex vehicle models.

8.1 Review of results

In Chapter 3, we presented a novel set of spatially distributed coverage

control algorithms that incorporate energy dynamics in order to obtain regions of

guaranteed reachability. This led to the use of limited-range generalized Voronoi

partitions instead of the typical Voronoi partitions. We designed four objective

functions to demonstrate the usage of these generalized Voronoi partitions in vari-

ous coverage tasks. We have shown through simulation and through experimental

results that the cases we developed perform as intended.

Next, Chapter 4 introduced two systems of wheeled vehicles with unicycle

dynamics undergoing deployment. We have also shown that the nonholonomic

168

169

vehicles converge to centroidal configurations via a hybrid invariance principle. The

hybrid systems framework has the potential to allow for more modes of operation.

For example, additional vehicle modes may also be introduced to handle obstacle

or collision avoidance as well. Even though we performed our analysis using regular

Voronoi regions, a very similar convergence result should apply for different spatial

tessellations. Other partitions, such as the range-limited partitions from [15] or

more general Voronoi partitions like those found in [38], should not affect the

convergence of wheeled vehicles.

Chapter 5 addressed the problem of area coverage maximization for agents

moving in a fast flow environment. The inability to move against the flow pre-

sented many interesting challenges, and the resulting set of possible time-optimal

trajectories were studied. We limited the set of flow environments to affine flow

fields and piecewise constant flow fields in order to have analytic results. However,

the methods presented in this chapter may be applied to more general flow fields

using numerical methods to compute optimal trajectories and gradient directions.

Another open question is in the appropriate choice of the coverage horizon T . This

choice is largely dependent on the communication power of the agents, however,

it may be useful from an energy-saving perspective to consider a smaller coverage

horizon. Possible directions of future work include consideration of objective func-

tions other than the total reachable area. This may be more suitable for sampling

a plume or chemical compound present in the flow environment. In this scenario,

it may be more advantageous for agents to move toward areas of higher chemical

concentrations, or to plan paths that maximize the amount of information gained

from sampling in order to construct an accurate estimate of the chemical field.

Rather than focusing on dynamic constraints as in the previous three chap-

ters, Chapter 6 introduced a limited-range and distributed implementation of the

DA algorithm developed by Rose, and applied it to the coverage problem. We de-

veloped limited-range results that extend those in [68] and [77]. When the sensing

radius is as large as the diameter of Q, this algorithm becomes the normal DA

algorithm of Rose. While the limited-range DA algorithm is able to outperform a

Lloyd-like gradient descent algorithm in many cases, the algorithm has its limita-

170

tions. As noted in simulations, final configurations may not be optimal as sensing

range decreases. Consideration of a heating and cooling cycle produces improved

results, but it is still an ad hoc solution to the underlying problem. Addition-

ally, the running time of the DA algorithm is longer than that of normal gradient

descent. This is because a gradient descent must be repeatedly performed after

each phase change until all N agents are active. Compare this to normal gradient

descent algorithms where all N agents are active from the beginning and only one

round of gradient descent is performed. Thus usage of the DA algorithm is a trade

off between fast convergence and improved optimality of final configurations and

improved insensitivity to initial positions.

Finally, Chapter 7 describes a robotic testbed constructed at UCSD that

demonstrates many of the deployment and coverage algorithms described in this

dissertation. We described the construction process and the overall architecture

of the various systems that comprise the testbed: the central server, the overhead

vision, and the individual robotic agents. Experimental data representative of

the power-aware, unicycle, and deterministic annealing coverage algorithms were

presented. The robotic agents are nonholonomic by construction, so we have shown

via implementation that algorithms from Chapter 3 as well as from Chapter 6 can

be implemented with such dynamics without loss of convergence results. Due to

the unique nature of coverage in a flow, we could not implement the results from

Chapter 5 in our testbed.

8.2 Future directions

With respect to dynamically constrained coverage, several questions and

interesting extensions remain. While the deployment algorithms presented in this

dissertation have focused on individual dynamic constraints, the question remains

if it is true that a combination of the results presented still converge to e.g. cen-

troidal configurations. Experimental results from the testbed seem to indicate this

fact. It should be straightforward to verify this desired convergence result using

the methods described in this work. In what follows, however, we will describe

171

other less obvious extensions motivated by the dynamically constrained deploy-

ment problems addressed in this dissertation.

8.2.1 Efficient computation of Voronoi diagrams in a flow

The flow coverage problem addressed in Chapter 5 presents a method to

maximize the area of reachable points in the flow environment. A crucial step

in doing this is computation of the reachable set of points for each agent. A

related problem is computing the so-called Zermelo-Voronoi diagram (ZVD) for

the group of agents in the flow environment. For a particular agent i in the flow

environment, the Zermelo-Voronoi region of agent i is defined as the set of points

that i can reach sooner than any other agent j in the flow environment. Much

work has been done describing these regions as well as developing efficient methods

for their computation, cf. [79, 55].

A notable property of the ZVD for slow flows–that is when the available

vehicle actuation exceeds the maximum flow speed–is that there exists a one-to-

one correspondence between the ZVD and the normal Voronoi partition. This has

motivated the work of Bakolas and Tsiotras [2]. However, the assumption that

the flow is slow is crucial in the formulation of the map from the ordinary Voronoi

partition to the ZVD and vice-versa. A similar map should be possible for the case

of a spatially constant fast flow field, as in the ones studied in Chapter 5. However,

the ZVD for a fast flow should map to something that is different from the normal

Voronoi diagram. This is due to the fact that there are directions of travel in the

fast flow that are “redundant” or sub-optimal. Thus, exclusion of these directions

in the transformed flow-less frame should result in a similar bijective map to the

one described in [2].

8.2.2 Coverage on general manifolds

Whereas the topics described in this dissertation deal with constraints that

enter through the dynamics of vehicles, a relevant variation involves constraints

entering in the topology of the vehicle’s operating environment. Specifically, the

172

agents could be constrained to move along the surface of a sphere, p(i) ∈ S2 for all

i. Several issues stemming from the topology of the sphere include proper choice

of coordinate frame and the notion of centroidal coverage. Interesting applications

for a result regarding spherical coverage involve the use of UAVs or UUVs over a

large portion of the Earth. Thus, curvature of the Earth becomes a factor, and it

should be verified that coverage still works properly in this topology.

There have been many promising results regarding spherical motion control

and Voronoi partitioning on a sphere. Regarding cooperative motion on a spherical

topology, we have results such as [58, 28, 87]. However, the particular problem

of deployment remains to be addressed, even though it may seem obvious. A

promising result for the coverage problem is presented by Buss and Fillmore in [9]

where they address the problem of determining the weighted average of discrete

points on a sphere. This weighted average point is also constrained to lie on

the sphere, and Buss and Fillmore introduce an efficient method to compute this

particular average.

What remains to be done is to extend the result of Buss and Fillmore to

continuous distributions over the sphere. They demonstrate that the spherical

averaging problem can be posed as a (convex) optimization problem whose cost

function appears very similar to the coverage cost functions found throughout this

dissertation. One should be able to show the analogous results for a continuous

distribution on a sphere. With this information in hand, along with results re-

garding Voronoi diagrams on a sphere [56], there remains the question of a proper

motion control algorithm for agents on a sphere.

8.2.3 Coverage on a graph

Perhaps an even more extreme case of topological constraint enters when

agents wish to perform deployment on a discrete graph. The connection between

this particular constraint and real-time coverage is motivated by Tabuada and his

work regarding the decomposition of the state space into a graph. Transitions

between nodes of this graph are determined by the underlying dynamics of the

continuous-time system [80]. The idea of coverage on a graph can also be used in

173

the context of general optimization as well. A recent problem has been introduced

by Patterson [62] regarding optimal placement of leader nodes in a network of nodes

performing noisy average consensus. In this preliminary work, some methods have

been introduced to solve this hard combinatorial problem. However, it may be

possible to approach this from a coverage viewpoint.

In both cases of deployment over a graph, several important issues must be

solved. A notion of distance is a central assumption in the deployment algorithms

described in this dissertation. However, on a discrete graph, one must come up

with a similar notion, for example hop count. Additionally, due to the discrete

nature of the graph, the convergence results established for continuous deploy-

ment may not hold anymore. It may be possible for agents to follow a “gradient

descent” algorithm over a graph and end up in a cycle of configurations instead

of converging to a fixed set of nodes on the graph. These issues, and many more,

present nontrivial challenges to this particular problem. However, deriving results

in with this particular constraint would indeed be useful.

Bibliography

[1] A. Astolfi, “Exponential stabilization of a wheeled mobile robot via discon-
tinuous control,” ASME Journal on Dynamic Systems, Measurement, and
Control, vol. 121, no. 1, pp. 121–127, 1999.

[2] E. Bakolas and P. Tsiotras, “The zermelovoronoi diagram: A dynamic parti-
tion problem,” Automatica, vol. 46, no. 12, pp. 2059–2067, Dec 2010.

[3] W. Basener, B. P. Brooks, and D. Ross, “The Brouwer Fixed Point Theorem
applied to rumour transmission,” Applied Mathematics Letters, vol. 19, no. 8,
pp. 841–842, August 2006.

[4] R. W. Beard and T. W. McLain, “Multiple UAV cooperative search under
collision avoidance and limited range communication constraints,” in IEEE
Conf. on Decision and Control, Maui, Hawaii, Dec. 2003, pp. 25–30.

[5] C. Belta and V. Kumar, “Abstraction and control for groups of robots,” IEEE
Transactions on Robotics, vol. 20, no. 5, pp. 865–875, 2004.

[6] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for
switched and hybrid systems,” IEEE Transactions on Automatic Control,
vol. 43, no. 4, pp. 475–482, 1998.

[7] A. E. Bryson and Y. Ho, Applied Optimal Control. Blaisdell Publishing
Company, 1969.

[8] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Networks,
ser. Applied Mathematics Series. Princeton University Press, 2009, available
at http://www.coordinationbook.info.

[9] S. Buss and J. Fillmore, “Spherical averages and applications to spherical
splines and interpolation,” ACM Transactions on Graphics, vol. 20, no. 2, pp.
95–126, Apr 2001.

[10] M. Campbell, M. Egersdedt, J. How, and R. Murray, “Autonomous driving
in urban environments: approaches, lessons and challenges,” Philosophical

174

175

Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 368, no. 1928, pp. 4649–4672, Oct 2010.

[11] N. Ceccarelli, J. Enright, E. Frazzoli, S. Rasmussen, and C. Schumacher,
“Micro uav path planning for reconnaissance in wind,” in American Control
Conference, July 2007, pp. 5310–5315.

[12] N. Ceccarelli, M. D. Marco, A. Garulli, and A. Giannitrapani, “Collective
circular motion of multi-vehicle systems with sensory limitations,” in 44th
IEEE Conference on Decision and Control, and European Control Conference,
2005, pp. 740–745.

[13] J. Cortés, “Finite-time convergent gradient flows with applications to network
consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, November 2006.

[14] J. Cortés, “Discontinuous dynamical systems – a tutorial on solutions, nons-
mooth analysis, and stability,” IEEE Control Systems Magazine, vol. 28, no. 3,
pp. 36–73, 2008.

[15] J. Cortés, S. Mart́ınez, and F. Bullo, “Spatially-distributed coverage optimiza-
tion and control with limited-range interactions,” ESAIM: Control, Optimi-
sation & Calculus of Variations, vol. 11, pp. 691–719, 2005.

[16] J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo, “Coverage control for mobile
sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 2, pp. 243–255, 2004.

[17] J. Desai, J. P. Ostrowski, and V. J. Kumar, “Control of formations for multiple
robots,” in IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium,
May 1998, pp. 2864–2869.

[18] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, Nov 2006.

[19] Q. Du, M. Emelianenko, and L. Ju, “Convergence of the lloyd algorithm
for computing centroidal voronoi tessellations,” SIAM Journal on Numerical
Analysis, vol. 44, no. 1, pp. 102–119, 2006.

[20] L. E. Dubins, “On curves of minimal length with a constraint on average
curvature and with prescribed initial and terminal positions and tangents,”
American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

[21] W. B. Dunbar and R. M. Murray, “Distributed receding horizon control for
multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4, pp. 549–558,
2006.

176

[22] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical
world with pervasive networks,” IEEE Pervasive Computing, vol. 1, no. 1, pp.
59–69, 2002.

[23] A. Fagiolini, M. Pellinacci, G. Valenti, G. Dini, and A. Bicchi, “Consensus-
based distributed intrusion detection for multi-robot systems,” in IEEE Inter-
national Conference on Robotics and Automation, Pasadena, CA, May 2008,
pp. 120–127.

[24] H. Flanders, “Differentiation under the integral sign,” The American Mathe-
matical Monthly, vol. 80, no. 6, pp. 615–627, June 1973.

[25] R. Goebel, J. P. Hespanha, A. R. Teel, C. Cai, and R. G. Sanfelice, “Hybrid
systems: generalized solutions and robust stability,” in IFAC Symposium on
Nonlinear Control Systems, Stuttgart, Germany, 2004, pp. 1–12.

[26] H. Hamilton, “Navigation and control problems for classes of micro air vehi-
cles,” in AIAA Atmospheric Flight Mechanics Conference and Exhibit, Key-
stone, CO, Aug 2006.

[27] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent mobile
sensor networks,” IEEE Transactions on Systems, Man and Cybernetics, Part
A, vol. 35, no. 1, pp. 78–92, January 2005.

[28] S. Hernandez and D. A. Paley, “Stabalization of collective motion in a time-
invariant flow field on a rotating sphere,” in American Control Conference,
St. Louis, MO, June 2009, pp. 623–628.

[29] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed scalable solution to the area
coverage problem,” in International Conference on Distributed Autonomous
Robotic Systems, Fukuoka, Japan, Jun. 2002, pp. 299–308.

[30] I. I. Hussein and D. M. Stipanovic̀, “Effective coverage control for mobile
sensor networks with guaranteed collision avoidance,” IEEE Transactions on
Control Systems Technology, vol. 15, no. 4, pp. 642–657, 2007.

[31] T. Hfera, J. Sherrattb, and P. Mainia, “Cellular pattern formation during
dictyostelium aggregation,” Physica D: Nonlinear Phenomena, vol. 85, no. 3,
pp. 425–444, Aug 1995.

[32] (2010, Nov) Khepera iii. K-Team. Website. [Online]. Available: http://www.k-
team.com/mobile-robotics-products/khepera-iii

[33] D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit,
K. Manesh, G. Flechsig, and J. Wang, “Chemical sensing based on catalytic

177

nanomotors: Motion-based detection of trace silver,” Journal of the American
Chemical Society, vol. 131, no. 34, pp. 12 082–12 083, Aug 2009.

[34] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[36] A. Kwok and S. Mart́ınez, “Energy-balancing cooperative strategies for sen-
sor deployment,” in IEEE International Conference on Decision and Control,
New Orleans, USA, December 2007.

[37] ——, “A coverage algorithm for drifters in a river environment,” in 2010
American Control Conference, 2010, 6436–6441.

[38] ——, “Deployment algorithms for a power-constrained mobile sensor net-
work,” International Journal of Robust and Nonlinear Control, vol. 20, no. 7,
pp. 725–842, 2010.

[39] ——, “Deployment of drifters in a piecewise-constant flow environment,” in
IEEE International Conference on Decision and Control, 2010, to appear.

[40] N. E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and
R. Davis, “Collective motion, sensor networks and ocean sampling,” Proceed-
ings of the IEEE, vol. 95, no. 1, pp. 48–74, 2007.

[41] W. Li and C. G. Cassandras, “Distributed cooperative coverage control of
sensor networks,” in IEEE International Conference on Decision and Control,
December 2005, pp. 2542–2547.

[42] D. Liberzon, Switching in Systems and Control, ser. Systems & Control: Foun-
dations & Applications. Birkhäuser, 2003.

[43] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on In-
formation Theory, vol. 28, no. 2, pp. 129–137, 1982, presented as Bell Labora-
tory Technical Memorandum at a 1957 Institute for Mathematical Statistics
meeting.

[44] J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang, and S. S. Sastry, “Dy-
namical properties of hybrid automata,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 2–17, 2003.

[45] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1997.

[46] J. Marsden and A. Tromba, Vector Calculus, 5th ed. W. H. Freeman, 2003.

178

[47] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of vehicles in
cyclic pursuit,” IEEE Transactions on Automatic Control, vol. 49, no. 11, pp.
1963–1974, 2004.

[48] S. Mart́ınez, F. Bullo, J. Cortés, and E. Frazzoli, “On synchronous robotic net-
works – Part II: Time complexity of rendezvous and deployment algorithms,”
IEEE Transactions on Automatic Control, vol. 52, no. 12, pp. 2214–2226,
2007.

[49] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with distributed
information,” IEEE Control Systems Magazine, vol. 27, no. 4, pp. 75–88, Aug
2007.

[50] T. G. McGee, , and J. K. Hendrick, “Path planning and control for multiple
point surveillance by an unmanned aircraft in wind,” in American Control
Conference, June 2006, pp. 4261–4266.

[51] T. G. McGee, S. Spry, and J. K. Hendrick, “Optimal path planning in a
constant wind with a bounded turning rate,” in AIAA Guidance, Navigation,
and Control Conference and Exhibit, August 2005, pp. 1–11.

[52] Y. Mei, Y. Lu, Y. Hu, and C. Lee, “Deployment of mobile robots with energy
and timing constraints,” IEEE Transactions on Robotics and Automation,
vol. 22, no. 3, pp. 507–522, June 2006.

[53] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian, “DYNAMO:
A cross-layer framework for end-to-end QoS and Energy Optimization in Mo-
bile Handheld Devices,” IEEE J. Selected Areas in Communication, May 2007.

[54] L. Moreau, “Stability of multiagent systems with time-dependent communi-
cation links,” IEEE Transactions on Automatic Control, vol. 50, no. 2, pp.
169–182, 2005.

[55] T. Nishida and K. Sugihara, “Approximation of the boat-sail voronoi dia-
gram and its application,” in Int’l Conf. on Computational Science and Its
Applications, Assisi, Italy, May 2004, pp. 227–236.

[56] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams, 2nd ed., ser. Wiley Series in
Probability and Statistics. John Wiley, 2000.

[57] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and
theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420,
2006.

[58] D. Paley, “Stabilization of collective motion on a sphere,” Automatica, vol. 45,
no. 1, pp. 212–216, Jan 2009.

179

[59] D. A. Paley and C. Peterson, “Stabilization of collective motion in a time-
invariant flowfield,” AIAA Journal of Guidance, Control, and Dynamics,
vol. 32, no. 3, pp. 771–779, 2009.

[60] L. Pallottino, V. G. Scordio, E. Frazzoli, and A. Bicchi, “Decentralized coop-
erative policy for conflict resolution in multi-vehicle systems,” IEEE Trans-
actions on Robotics, vol. 23, no. 6, pp. 1170–1183, 2007.

[61] L. Pallottino, V. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized coopera-
tive policy for conflict resolution in multivehicle systems,” IEEE Transactions
on Robotics, vol. 23, no. 6, pp. 1170–1183, December 2007.

[62] S. Patterson and B. Bamieh, “Leader selection for optimal formation coher-
ence,” in IEEE International Conference on Decision and Control, Atlanta,
GA, Dec 2010.

[63] L. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. Mesquita, and
G. Pereira, “Simultaneous coverage and tracking (SCAT) of moving targets
with robot networks,” in Workshop on Algorithmic Foundations of Robotics,
December 2008.

[64] D. Pines and F. Bohorquez, “Challenges facing future micro-air-vehicle devel-
opment,” AIAA Journal of Aircraft, vol. 43, no. 2, pp. 290–305, Mar 2006.

[65] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile sensor net-
works,” in IEEE Int. Conf. on Robotics and Automation, New Orleans, LA,
May 2004, pp. 165–172.

[66] V. Raghunathan, C. Pereira, M. Srivastava, and R. Gupta, “Energy-aware
wireless systems with adaptive power-fidelity tradeoffs,” IEEE Trans. Very
Large Scale Integration Systems, vol. 13, no. 2, pp. 211–225, February 2005.

[67] J. Reif and Z. Sun, “Movement planning in the presence of flows,” Algorith-
mica, vol. 39, no. 2, pp. 127–153, June 2004.

[68] K. Rose, “Deterministic annealing for clustering, compression, classification,
regression, and related optimization problems,” Proceedings of the IEEE,
vol. 80, no. 11, pp. 2210–2239, 1998.

[69] D. Rudnick, R. Davis, C. Eriksen, D. Fratantoni, and M. Perry, “Underwater
gliders for ocean research,” Marine Technology Society Journal, vol. 38, no. 2,
pp. 73–84, 2004.

[70] R. Rysdyk, “Course and heading changes in significant wind,” AIAA Journal
of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1168–1171, 2007.

180

[71] R. G. Sanfelice and E. Frazzoli, “On the optimality of Dubins paths across
heterogeneous terrain,” in Hybrid systems: Computation and Control, 2008,
pp. 457–470.

[72] R. G. Sanfelice, R. Goebel, and A. R. Teel, “Results on convergence in hybrid
systems via detectability and an invariance principle,” in American Control
Conference, 2005, pp. 551–556.

[73] K. Savla, E. Frazzoli, and F. Bullo, “Traveling salesperson problems for the
Dubins vehicle,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp.
1378–1391, jULY 2008.

[74] M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control with
sensory feedback for networked robots,” in Proceedings of Robotics: Science
and Systems, August 2006.

[75] M. Schwager, D. Rus, and J. Slotine, “Decentralized, adaptive coverage con-
trol for networked robots,” International Journal of Robotics Research, 2009,
submitted.

[76] U. Serres, “On the curvature of two-dimensional optimal control systems and
zermelos navigation problem,” Journal of Mathematical Sciences, vol. 135,
no. 4, pp. 3224–3243, 2006.

[77] P. Sharma, S. Salapaka, and C. Beck, “A scalable deterministic annealing
algorithm for resource allocation problems,” in American Control Conference,
June 2006, pp. 3092–3097.

[78] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. Wiley-Interscience, 2006.

[79] K. Sugihara, “Voronoi diagrams in a river,” Purdue University, Tech. Rep.
CSD-TR-1052, Dec 1990.

[80] P. Tabuada, “An approximate simulation approach to symbolic control,”
IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1406–1418, Jul
2008.

[81] L. Techy, D. Smale, and C. Woolsey, “Coordinated aerobiological sampling of
a plant pathogen in the lower atmosphere using two autonomous unmanned
aerial vehicles,” Journal of Field Robotics, vol. 27, no. 3, pp. 335–343, 2010.

[82] L. Techy and C. A. Woolsey, “Minimum-time path planning for unmanned
aerial vehicles in steady uniform winds,” AIAA Journal of Guidance, Control,
and Dynamics, vol. 32, no. 6, pp. 1736–1746, 2009.

181

[83] C. Tomlin, G. J. Pappas, and S. S. Sastry, “Conflict resolution for air traffic
management: A study in multiagent hybrid systems,” IEEE Transactions on
Automatic Control, vol. 43, no. 4, pp. 509–21, 1998.

[84] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deter-
ministc and stochastic gradient optimization algorithms,” IEEE Transactions
on Automatic Control, vol. 31, no. 9, pp. 803–812, September 1986.

[85] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,”
IEEE Transactions on Mobile Computing, pp. 640–652, June 2006.

[86] S. Waslander, R. Raffard, and C. Tomlin, “Market-based air traffic flow con-
trol with competing airlines,” Journal of Guidance, Control, and Dynamics,
vol. 31, no. 1, pp. 148–161, 2008.

[87] W. Wu and F. Zhang, “Curvature based cooperative exploration of three
dimensional scalar fields,” in American Control Conference, Baltimore, MD,
Jun 2010, pp. 2909–2914.

[88] P. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of coop-
erative, autonomous vehicles in warehouses,” AI Magazine, vol. 29, no. 1, pp.
9–19, 2008.

[89] W. Xi, X. Tan, and J. S. Baras, “Gibbs sampler-based coordination of au-
tonomous swarms,” Automatica, vol. 42, no. 7, pp. 1107–1119, July 2006.

[90] H. Yamaguchi and J. W. Burdick, “Time-varying feedback control for non-
holonomic mobile robots forming group formations,” in IEEE International
Conference on Decision and Control, vol. 4, 1998, pp. 4156–4163.

[91] E. Zermelo, “Über das navigationproble bei ruhender oder veranderlicher
windverteilung,” Z. Angrew. Math. und. Mech, vol. 11, 1931.

