Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Developmental or degenerative - NR2E3 gene mutations in two patients with enhanced S cone syndrome

  • Author(s): Udar, Nitin;
  • Small, Kent;
  • Chalukya, Meenal;
  • Silva-Garcia, Rosamaria;
  • Marmor, Michael
  • et al.
Abstract

Purpose

Enhanced S Cone Syndrome is a rare autosomal recessive disorder characterized clinically by an absence of rod function, a replacement of most L and M cone function by S cone activity (Goldmann-Favre Syndrome) and by variable degrees of retinal degeneration in different families. The causative gene, nuclear receptor subfamily 2, group E, member 3 (NR2E3), controls the developmental sequence for rods and cones. The purpose of this study was to compare the nature and implications of mutations in two subjects with Enhanced S Cone Syndrome who have significantly different degrees of degenerative damage.

Methods

A direct sequencing approach was used to identify the mutations. Genomic DNA was amplified from all the exons of NR2E3 and used as a template for sequencing. Of the two families studied, Case 1 is of Persian ethnicity while Case 2 is Brazilian. A total of six individuals within the two families were studied.

Results

Case 1 (original propositus of the syndrome) has the characteristic developmental rod/cone abnormality with large amplitude electroretinogram responses and no retinal degeneration. She was homozygous for a novel mutation, c.[del196–201del6] (p.G66-C67del), which lies entirely within the P-box for this gene. By comparison, Case 2 had Goldmann-Favre Syndrome with retinal degeneration and low electroretinogram signals. She was a compound heterozygote for c.[119–2A>C]+[del194–202del9] (p.N65-C67del), mutations that have been reported previously. Her second mutation overlaps that of Case 1 within the P-box.

Conclusions

The novel in-frame homozygous deletion of Case 1, within the P-box motif of the DNA binding domain, caused a developmental abnormality without retinal degeneration. Case 2, with more traditional Goldmann-Favre Syndrome with retinal degeneration, was a compound heterozygote where one allele had a similar P-box deletion but the other was a splicing defect. Case 1 is the first reported homozygous deletion within the P-box. This is the first report of NR2E3 mutations in a Persian and a Brazilian family.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View