- Main
Ion acceleration and anomalous transport in the near wake of a plasma limiter
Abstract
Ion acceleration and anomalous transport were studied experimentally in the near wake region of an electrically floating disk limiter immersed in two different types of collisionless, supersonically flowing, magnetized plasmas: the first initially quiescent, the second initially turbulent. Ion densities and velocity distributions were obtained using a nonperturbing laser induced fluorescence diagnostic. Large-amplitude, low-frequency turbulence was observed at the obstacle edge and in the wake. Rapid ion and electron configuration space transport and ion velocity space transport were observed. Configuration space and velocity space transport were similar for both quiescent and turbulent plasma-obstacle systems, suggesting that plasma-obstacle effects outweigh the effects of initial plasma turbulence levels. © 1997 American Institute of Physics.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-