Skip to main content
eScholarship
Open Access Publications from the University of California

Notch post-translationally regulates β-catenin protein in stem and progenitor cells.

  • Author(s): Kwon, Chulan
  • Cheng, Paul
  • King, Isabelle N
  • Andersen, Peter
  • Shenje, Lincoln
  • Nigam, Vishal
  • Srivastava, Deepak
  • et al.

Published Web Location

https://doi.org/10.1038/ncb2313
Abstract

Cellular decisions of self-renewal or differentiation arise from integration and reciprocal titration of numerous regulatory networks. Notch and Wnt/β-catenin signalling often intersect in stem and progenitor cells and regulate each other transcriptionally. The biological outcome of signalling through each pathway often depends on the context and timing as cells progress through stages of differentiation. Here, we show that membrane-bound Notch physically associates with unphosphorylated (active) β-catenin in stem and colon cancer cells and negatively regulates post-translational accumulation of active β-catenin protein. Notch-dependent regulation of β-catenin protein did not require ligand-dependent membrane cleavage of Notch or the glycogen synthase kinase-3β-dependent activity of the β-catenin destruction complex. It did, however, require the endocytic adaptor protein Numb and lysosomal activity. This study reveals a previously unrecognized function of Notch in negatively titrating active β-catenin protein levels in stem and progenitor cells.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View